Skip to main content
Determination of Sulfur Environments in Borosilicate Waste Glasses Using X-ray Absorption Near-Edge Spectroscopy
Journal of Non-Crystalline Solids
  • David A. McKeown, Vitreous State Laboratory
  • I. S. Muller, Vitreous State Laboratory
  • Hao Gan, Vitreous State Laboratory
  • Ian L. Pegg, Vitreous State Laboratory
  • Wayne C. Stolte, University of Nevada, Las Vegas
Document Type
Publication Date
Sulfur can be the waste-loading limiting constituent for vitrification of sulfur-bearing radioactive wastes due to low solubility in silicate melts. Methods to improve sulfur loading would benefit from improved understanding of the structural aspects of sulfur incorporation in borosilicate and other glasses. To this end, sulfur XANES spectra were collected for eight crystalline standards and twenty-four glasses, including borosilicate, phosphate, and borate compositions. Spectra for the standards show a systematic energy shift of the sulfur K-edge from 2469 to 2482 eV, as sulfur valence increases from 2- (in sulfides) to 6+ (in sulfates). Most crucible glasses investigated have simple edges near 2482 eV that indicate sulfur in the form of sulfate only. Other glasses, some synthesized under reducing conditions, have complicated edges, indicating sulfate, sulfite, and more reduced species that may include S, S–S doublets, or short polysulfide chains. Sulfide species (S2-) were not dominant in any of the samples over the range of redox conditions investigated. These results indicate that sulfur incorporation is considerably more complex than would be suggested by the conventional interpretation of the redox-dependence of sulfur solubility, which considers only sulfate and sulfide species. Raman data indicate that several of the glasses investigated are not homogeneous with regard to all sulfur species.
  • Boron compounds,
  • Glass,
  • Silicates,
  • Sulfate,
  • Sulfur,
  • X-ray Absorption Near Edge Structure
Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited
Citation Information
David A. McKeown, I. S. Muller, Hao Gan, Ian L. Pegg, et al.. "Determination of Sulfur Environments in Borosilicate Waste Glasses Using X-ray Absorption Near-Edge Spectroscopy" Journal of Non-Crystalline Solids Vol. 333 (2004) p. 74 - 84
Available at: