Skip to main content
Experimental Characterization of Piezoelectric Friction Dampers
Proceedings Volume 4330, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways
  • Gabriel T. Garrett
  • Genda Chen, Missouri University of Science and Technology
  • Franklin Y. Cheng, Missouri University of Science and Technology
  • Wayne Huebner, Missouri University of Science and Technology
A piezoelectric friction damper was designed and fabricated to control the 1/4-scale, three-story frame structure in the Structures Laboratory at the University of Missouri-Rolla. In this paper, the damper is characterized in terms of energy dissipation, frequency and temperature dependence, and long-term durability under harmonic loading. The damper was tested with four piezoelectric stack actuators, as critical components of the damper were subjected to constant voltages to simulate the behavior of passive friction dampers. It was also tested under linearly increasing voltage signals to understand the adaptability of the damper to external electric energy. Based on the experimental results, it was concluded that the load-displacement loops of the damper are nearly rectangular and the effective stiffness of the damper linearly increases with the clamping force. The area of each loop does not change significantly with the excitation frequency. The properties of the damper do not vary with its ambient temperature and remain almost the same after being tested for 30000 cycles. The friction coefficient of the damper is independent upon the excitation frequency (higher than 2 Hz) and the clamping force (larger than 100 pounds on each actuator). Although the friction force increases with the applied voltage, its magnitude is significantly smaller than expected. Several possible reasons for less friction were pinpointed.
Meeting Name
SPIE'S 8th Annual International Symposium on Smart Structures and Materials (2001: Mar. 4-8, Newport Beach, CA)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
  • Adaptive contact force,
  • Friction damper,
  • Piezoelectric actuators,
  • Semi-active control,
  • Variable friction,
  • Actuators,
  • Damping,
  • Electric excitation,
  • Electric potential,
  • Harmonic generation,
  • Loads (forces),
  • Structural frames,
  • Thermal effects,
  • Piezoelectric devices
Document Type
Article - Conference proceedings
Document Version
File Type
© 2001 SPIE -- The International Society for Optical Engineering, All rights reserved.
Publication Date
Citation Information
Gabriel T. Garrett, Genda Chen, Franklin Y. Cheng and Wayne Huebner. "Experimental Characterization of Piezoelectric Friction Dampers" Proceedings Volume 4330, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways (2001) p. 405 - 415 ISSN: 0277786X
Available at: