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a b s t r a c t

The goal of this work is to present a causation modeling methodology with the ability to accurately infer
blood glucose levels using a large set of highly correlated noninvasive input variables over an extended
period of time. These models can provide insight to improve glucose monitoring, and glucose regulation
through advanced model-based control technologies. The efficacy of this approach is demonstrated using
real data from a type 2 diabetic (T2D) subject collected under free-living conditions over a period of 25
consecutive days. The model was identified and tested using eleven variables that included three food
variables as well as several activity and stress variables. The model was trained using 20 days of data
and validated using 5 days of data. This gave a fitted correlation coefficient of 0.70 and an average abso-
lute error (AAE) (i.e., the average of the absolute values for the measured glucose concentration minus
modeled glucose concentration) of 13.3 mg/dL for the validation data. This AAE result was significantly
better than the subject’s personal glucose meter AAE of 15.3 mg/dL for replicated measurements.

Published by Elsevier Ltd.

1. Introduction

Type 2 diabetes is approaching ‘‘epidemic” incidence in the Uni-
ted States, driven in large part by a remarkable rise in obesity rates
over the past 15 years [1]. From 1980 through 2003, the number of
Americans with diabetes has more than doubled and almost two-
thirds of all Americans are now classified as either overweight or
obese, a condition that puts them at a high risk for type 2 diabetes.
Nearly 18.2 million people in the United States, or about 6.3% of the
population, have diabetes [2]. Diabetes mellitus is a group of met-
abolic diseases characterized by high blood sugar (glucose) levels,
which result from defects in insulin secretion, action, or both. Pro-
longed high glucose levels can cause damage to many areas of the
body, increasing the risk of kidney failure, blindness, nerve dam-
age, amputations, heart attack and stroke. Blood glucose (BG) lev-
els are affected by factors such as food intake, stress, physical
activity, hormonal changes, medications, illness/infection, and fati-
gue. All of these, as well as insulin tolerance, make managing dia-
betes more difficult and increase the chances of either low blood
glucose (hypoglycemia) or high blood glucose (hyperglycemia).
(This document will use the term ‘‘blood glucose” loosely to mean

‘‘blood glucose concentration” commonly measured in mg/dL.) The
importance of tight glucose control in reducing the complications
associated with diabetes is widely recognized. The primary ways
that glucose has been managed include diet, exercise, stress man-
agement, insulin injections, and different types of drugs [3].

This purpose of this work is to develop a modeling methodology
that accurately maps disturbances (i.e., inputs) to changes in BG
levels. More specifically, this work seeks to develop a strong posi-
tive correlation between modeled BG and measured BG using mea-
sured input variables that fall into three causation classes: food,
activity and stress. In addition, this approach includes modeling
circadian behavior though a variable we define as the time of day
(TOD) or simply, the 24 h clock. Although there are other benefits,
the primary motivation for modeling these effects is to advance
model-based control. Accurate knowledge of how much BG changes
or will change from measured inputs and an accurate relationship
between BG and causation inputs provides the framework for mod-
el-based proactive (i.e., feedforward) and predictive control. How-
ever, demonstration of improved BG control is not within the scope
of this work but is a future objective of our research group. There-
fore, since this scope is not to improve BG control and our primary
interest is how well modeled BG correlates with measured glucose,
performance measures such as maximum deviation is not a crite-
rion that we will use to judge the success of this work. This type
of criterion will be of importance in a future phase of our research
where the control objective will be to reduce the duration and
magnitude of BG beyond threshold limits.
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Driven by the goal of developing an effective automatic glucose
control system, several researchers have been working on develop-
ing accurate predictive models [4,5] as well as using advanced con-
trol techniques like model-based controllers [6], robust tracking
[7], run-to-run control [8], and carbohydrate feedforward control
[9]. However, much of this work has been restricted to in silico or
simulation studies (i.e., not using real subjects). Nonetheless, there
have been a few studies which have involved real subjects [10] but
the scope of this work has been limited to periods of relatively mild
glucose excursions such as night time. Moreover, current compart-
ment-based glucose modeling approaches have at most considered
only two inputs – amount of glucose ingestion [11] and exercise
[12,13]. In contrast, the aim considered here is to develop a mod-
eling methodology that considers a much larger set of inputs. More
specifically, the measurable input set consists of 24 inputs: three
nutrient variables, 20 activity and stress-related variables, and
TOD. The nutrient variables are carbohydrates, fats and proteins.
TOD is measured in minutes starting at 0 (at 12:00 am) and ending
at 1339 (at 11:59 pm). The data for the other 20 variables are
generated by the SenseWear� Pro3 Body Monitoring System
(BodyMedia Inc., Pittsburgh, PA) worn as an armband on the upper
part of the left or right arm (i.e., the triceps area). Thus, two addi-
tional challenges are the reduction of this set of variables and the
accurate estimation of model parameters from such an extensive
set of inputs.

This approach is further challenged by the requirement to
determine the independent effects of each input (i.e., causation)
over a sufficiently large input space representing normal behavior
for the subject. It is not practical to obtain such an input space
using designed (controlled) experimental data collection due to
the long time duration and uncontrollable inputs such as emo-
tional stress. As a result, in this study modeling data are collected
under a free-living protocol. However, freely varying inputs can
produce data sets with high input correlations (e.g., carbohydrates
and fats typically increase and decrease simultaneously) and thus,
impede the ability to obtain input causation. The approach in this
paper uniquely addresses this challenge using a modification of the
Wiener method developed by [14]. The Wiener network has a un-
ique ability to address this issue because it passes each input
through its own linear dynamic block allowing differences in input
dynamics to break down cross correlation of inputs. A similar
observation has also been reported by [15] where they have used
dynamic transformations of correlated inputs (carbohydrate
content of meals and insulin) and reported better models. The
approach in [15] was not formally framed in the context of
block-oriented modeling as it is here.

For experimentally designed data collection, where the inputs
are orthogonal, the method in [14] is practical in estimating the
parameters using the linear discrete-time equations as proposed.
However, when inputs are appreciably correlated for models that
are linear in parameters, it does not appear possible to determine
parameter estimates that can give the accurate response behavior
for independent input changes (i.e., a cause and effect model). This
inability is because the information to estimate a parameter is cor-
related in the same way its associated variable is correlated with
other variables. This problem of correlation between the inputs
when using models that are linear in parameters has also been
highlighted in [15] where they discuss how identification of AR
models (and to a lesser degree ARX models) are severely hampered
by correlation and can result in models with physically unreason-
able gains associated with those inputs.

In contrast, models that have nonlinear response surfaces in the
parameter space are not strongly affected by correlated inputs be-
cause the information to estimate parameters is not likely to be
strongly correlated due to the complexity of the response surface rel-
ative to changes in parameter values. The drawback to using a model

that is nonlinear in parameters is that the response surface is more
restricted which means that this choice should be made carefully
from as much phenomenological knowledge as possible. For plasma
glucose modeling, current theoretical knowledge is so limited that a
theoretical modeling approach does not appear to be practical at this
time. Therefore, a semi-empirical approach has been chosen to esti-
mate the linear dynamic blocks of the Wiener network and use non-
linear structures with time derivative behavior that have roots in the
laws of conservation (what is commonly called ‘‘transfer function
models”). Moreover, even though these structures are converted to
discrete-time approximations, the dependence on the physically
based parameters that come from the continuous-time forms are
maintained to preserve the property of a nonlinear response surface
in a physically based parameter space.

The proposed method is presented and evaluated in this article
by first introducing the methodology in the next section. Then the
details of the real subject study and application of the proposed
methodology to real glucose data are discussed in Section 3. The
model results, a discussion of the models, and insights gained from
this work are presented in Section 4. Finally, in Section 5 the most
significant results are summarized and plans for future work are
discussed.

2. Modeling methodology

As stated above, the purpose of this article is to evaluate the
efficacy of the proposed modeling method to infer plasma glucose
concentration using noninvasive input variables, such as food com-
ponents, as well as various kinds of activity and stress-related vari-
ables. Since the data are collected under free living conditions,
several of these inputs are highly correlated and can have nonlinear,
highly interactive, and dynamic effects on glucose level. Dynamic
behavior manifests as time lags between the input changes and
the output response. Time-lagged or dynamic behavior of food
consumption and activity on glucose variation is well accepted by
diabetic researchers. Interactive behavior, by definition, requires
observing or modeling the effects of two or more variables simulta-
neously. For two variables, for example, interactive behavior exists
when the level of one variable is critical to how changes in the other
variable affect changes in the response. An interaction example in
this context is the relationship between food and exercise. For
example, depending on recent eating history, exercise could cause
either a decrease or an increase in blood glucose. It is also important
to consider nonlinear behavior because of the wide range of glucose
response a diabetic person can experience in a relatively short
period of time from modest changes in inputs. Therefore, the
method proposed here addresses these conditions in the data and
these complexities in the relationship between inputs and the
response.

Accordingly, the proposed method is a unique and direct appli-
cation of block-oriented Wiener modeling that extends the method
developed in [14] in a novel way to address the challenges of this
application. Note that the Wiener network is in the class of
block-oriented modeling, an active area of research in the system
identification literature [16–19] and use of a Wiener structure for
modeling effects of multiple inputs in biomedical systems is
becoming more common [20,21]. The block diagram for the p
input, single output Wiener network is shown in Fig. 1. In this
application, the inputs are the measured noninvasive variables
and the output or response is glucose concentration. As illustrated,
each input has its own linear dynamic block. Note that each
dynamic block has an unobservable, intermediate output vi, which
represents the independent dynamic response of the input xi. All
the intermediate vi’s then pass through the static nonlinear block
to produce the final output, y.

96 D.K. Rollins et al. / Journal of Process Control 20 (2010) 95–107



A critical characteristic of this approach is the derivation and
strict use of functions that are nonlinear in physically interpretable
parameters. This property is important to accurately map the in-
puts (that are highly correlated) to their intermediate dynamic
counterparts, i.e., to accurately map xi to vi. The Wiener network
is defined by its unique structure to map each input to its interme-
diate dynamic output variable, vi. After collecting the vi’s and pass-
ing them through a nonlinear static block, this network is able to
simultaneously address nonlinear static and nonlinear dynamic
behavior. Note that, although the xi’s can be highly correlated,
the vi’s are not likely to be correlated since different inputs are
not likely to have similar dynamic behavior. For example, although
carbohydrates and fats will likely be highly correlated since they
increase and decrease together, they are likely to have different
time constants (due to different time scales for digestion) and
hence different dynamic behavior for the vi’s. Therefore, since the
vi’s are different, they will be weakly correlated at best. Notwith-
standing, given this property, the nonlinear static function can be
linear or nonlinear in parameters without adversely affecting cau-
sation model development.

Second-order differential equations with first order input
dynamics are used for the linear dynamic blocks. That is, all dy-
namic blocks used here usually have the second-order-plus-lead
with dead time (SOPLDT) form given below:

s2
i

d2v iðtÞ
dt2 þ 2sifi

dv iðtÞ
dt
þ v iðtÞ ¼ sai

dxiðt � hiÞ
dt

þ xiðt � hiÞ ð1Þ

where xi(t) is the deviation variable for ith input, i varies from 1 to p,
p is the total number of inputs, sai is the lead parameter, si is the
time constant, fi is the damping coefficient and hi is the dead time.
The validity of using the second order differential equations given
by Eq. (1) can be shown using a set of theoretical component mass
balances for plasma glucose and insulin such as given in [22]. The
term 2sifi can be thought of as a characteristic time-scale parameter
for the ith input in this study. For conservation-based differential
equations, 2sifi can be considered as a measure of an effective resi-
dence time for input variable i. Note that the dynamic behavior of
any input is represented by at most four dynamic parameters giving
a maximum number of 4p dynamic parameters.

For the static nonlinear function (i.e., the f(V) block in Fig. 1), the
second order regression form including interaction terms given by
Eq. (2) below is being used:

ĝðtÞ ¼ f ðVÞ
¼ a0 þ a1v1ðtÞ þ � � � þ apvpðtÞ þ b1v2

1ðtÞ þ � � � þ bpv2
pðtÞ

þ c1;2v1ðtÞv2ðtÞ þ � � � þ cp�1;pvp�1ðtÞvpðtÞ ð2Þ

where ĝ is the estimated glucose concentration. More specifically,
all the input variables xi’s represent deviation from an initial state
under slow change in this context of glucose modeling. Ideally, this
state would be a state of no change (i.e., a steady state) but this is
not possible for a real subject. Note that the number of static
parameters is 1 + 2p + 1 + � � � + (p � 1) for a total number equal to

Np ¼ 1þ 2pþ 1
2
ðp� 1Þp ð3Þ

For the set of parameters in Eqs. (1) and (2), solutions for vi(t) can be
found under sequential step input changes.

For the proposed method, a discrete-time (DT) Wiener form was
used because the oscillatory behavior of the measured glucose le-
vel was quite evident and it is desirable to allow the prediction
equation to handle varying dynamics from underdamped (i.e.,
0 < fi < 1) to overdamped (i.e., fi > 1) behavior during parameter
optimization. The approximate DT form of Eq. (1) was obtained
for a sampling interval of Dt using backward difference derivatives
with vi,t � vi(t), vi,t�Dt � vi(t � Dt) at sampled times t, t � Dt, . . . , as

v i;t ¼ d1;iv i;t�Dt þ d2;iv i;t�2Dt þx1;ixi;t�ðDt�hÞ þx2;ixi;t�ð2Dt�hÞ ð4Þ

where x2,i = 1 � d1,i � d2,i �x1,i to satisfy the constraint of unity
gain and the following equations were obtained:

d1;i ¼
2s2

i þ 2sifiDt
s2

i þ 2sifiDt þ Dt2 ð5Þ

d2;i ¼
�s2

i

s2
i þ 2sifiDt þ Dt2 ð6Þ

x1;i ¼
ðsai þ DtÞDt

s2
i þ 2sifiDt þ Dt2 ð7Þ

With t � Dt taken as the current time, Eq. (4) estimates the value of
vi(t) at the next sampling instant, t, using inputs only. Thus, strictly
speaking, it is not a one-step-ahead predictor because it is not
dependent on output values. That is, given values for the inputs,
either from the past, present, or anticipated future (e.g., one could
enter a meal that they expect to eat in the near future), Eq. (2) is
able to estimate glucose response at the next time instant. The dy-
namic parameters associated with the ith input physically represent
time-course quantities. For example, 2sifi gives a relative measure
of the time scale over which input i affects blood glucose. Under
the Wiener network, Eqs. (5)–(7) provide the capability to model
the independent input effects using free-living data. The method re-
quires that, for each vi,t, the parameters in Eq. (4) (i.e., d1,i, d2,i, x1,i

and x2,i) be determined from the continuous-time dynamic param-
eters (i.e., sai, si, and fi) via Eqs. (5)–(7). After obtaining an Eq. (4) for
each i, the modeled glucose value is determined by substituting
these results into the DT form of Eq. (2). Consequently, ĝ is com-
pletely determined from measured input data only and measured
glucose level is not used in its inference.

The complete input-only glucose model that includes the error
term in additive ‘‘white” noise that is being defined generally as
Model 1 is given as:

yt ¼ gt þ et ð8Þ

where yt is the observed glucose (in deviation variable) at time t, gt

is the true value with its estimate ĝ given in Eq. (2), et is the error
term under the assumptions of independence, normality and con-
stant variance, i.e.,

et � Nð0;r2Þ 8t ð9Þ

Under Eq. (9), in the absence of measured glucose concentration,
the following estimate for the true value of glucose concentration
under Model 1 is proposed:

ŷt ¼ ĝt ð10Þ

Fig. 1. The Wiener block diagram for a p input, single output system.
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Under infrequently measured glucose concentration, such as lancet
glucose monitoring, one could use the following feedback correc-
tion equation to improve estimation under Model 1 [23]:

ŷt ¼ ĝt þ et� ¼ ĝt þ ðyt� � ĝt� Þ ð11Þ

where t* is the time of the most recently measured value from the
lancet meter.

Under serially correlated noise (Nt) and ‘‘continuous glucose
monitoring” (CGM) (i.e., frequently measured glucose concentra-
tion), following [24], Model 2 is defined as

yt ¼ gt þ Nt ð12Þ

with

Nt ¼
et

1� p1B� p2B2 � � � �
ð13Þ

where B is the backward shift operator, i.e. Byt = yt�Dt. Under Model
2, the estimate for glucose concentration at time t is given by

ŷt ¼ ĝt þ p̂1et�Dt þ p̂2et�2Dt þ � � � ð14Þ

where et�iDt is the residual at time t � iDt, i.e., et�iDt ¼ yt�iDt � ĝt�iDt .
See [24] for a discussion on determining the estimates of pi denoted
by p̂i.

While all the predictive power based on input changes is con-
tained in ĝt , Eq. (14) can be useful for glucose inference in
closed-loop control applications with CGM to provide significantly
better model accuracy, depending on the quality of the help that
comes from the glucose measurements. Eq. (14) is a one-step-
ahead predictor as it estimates glucose for the next time step t
using current (t � Dt) and past (t � iDt) glucose measurements.
(A general k-steps-ahead (KSA) predictor, which is more likely to
be used, is presented later in the document.) To illustrate the mod-
eling strength of the proposed method under correlated inputs, the
Jacobian or so called ‘‘derivative matrix” is called upon because the
information for parameter estimation is observable through this
matrix [25]. This matrix is represented for Model 1 in Eq. (15) be-
low, where there is one column for each parameter and one row for
each sample time in training

V ¼

@gt
@s1

@gt
@f1

� � � @gt
@ci

@gtþ1
@s1

@gtþ1
@f1

� � � @gtþ1
@ci

..

. ..
. ..

. ..
.

2
6664

3
7775 ð15Þ

Dropping the subscript t for simplicity, the partial derivative of g is
derived with respect to the dynamic parameters si and fi for input
variable i. Using Eq. (2) and differentiating give:

@g
@si
¼ ai

@v i

@si
þ 2biv i

@v i

@si
þ
X
k – i

ci;kvk
@v i

@si

¼ ai þ 2biv i þ
X
k – i

ci;kvk

 !
@v i

@si
ð16aÞ

@g
@fi
¼ ai

@v i

@fi
þ 2biv i

@v i

@fi
þ
X
k – i

ci;kvk
@v i

@fi

¼ ai þ 2biv i þ
X
k – i

ci;kvk

 !
@v i

@fi
ð16bÞ

As illustrated by Eqs. (16a) and (16b), the partial derivatives of g
with respect to si and fi will be correlated only if the partial deriv-
atives of vi with respect to si and fi are correlated since these equa-
tions are the same except for these terms. Now from Eq. (2) (for
h = 0) these derivatives, for any vt (dropping subscript i for simplic-
ity), are

@v t

@s
¼ 2Dtðs2fþ 2sDt þ fDt2Þ

ðs2 þ 2sfDt þ Dt2Þ2

 !
v t�Dt

þ 2s2 þ 2sfDt
s2 þ 2sfDt þ Dt2

� �
@v t�Dt

@s

� 2sDtðsfþ DtÞ
ðs2 þ 2sfDt þ Dt2Þ2

 !
v t�2Dt

� s2

s2 þ 2sfDt þ Dt2

� �
@v t�2Dt

@s

� 2Dtðsa þ DtÞðsþ fDtÞ
ðs2 þ 2sfDt þ Dt2Þ2

 !
xt�Dt

þ 2saDtðsþ fDtÞ
ðs2 þ 2sfDt þ Dt2Þ2

 !
xt�2Dt ð17aÞ

@v t

@f
¼ 2sDtðDt2 � s2Þ
ðs2 þ 2sfDt þ Dt2Þ2

 !
v t�Dt

þ 2s2 þ 2sfDt
s2 þ 2sfDt þ Dt2

� �
@v t�Dt

@f

� 2s3Dt

ðs2 þ 2sfDt þ Dt2Þ2

 !
v t�2Dt

� s2

s2 þ 2sfDt þ Dt2

� �
@v t�2Dt

@f

� 2sDt2ðsa þ DtÞ
ðs2 þ 2sfDt þ Dt2Þ2

 !
xt�Dt

þ 2ssaDt2

ðs2 þ 2sfDt þ Dt2Þ2

 !
xt�2Dt ð17bÞ

Thus, these results show that Eqs. (17a) and (17b) are quite dif-
ferent, highly complex and highly nonlinear. After substituting
these equations into Eqs. (16a) and (16b), it becomes evident that
the information for estimating each dynamic parameter is nearly
unique (i.e., uncorrelated) since the equation for each parameter
is quite different.

A similar analysis is now done for the static gain parameters.
The partial derivatives with respect to these parameters (i.e., the
a’s, b’s and c’s) are given below as:

@gt

@a1
¼ v1;t;

@gt

@a2
¼ v2;t; . . . ;

@gt

@b1
¼ v2

1;t ;
@gt

@b2
¼ v2

2;t � � � ;
@gt

@c1;2

¼ v1;tv2;t ; . . . ð18Þ

First, all of these derivatives are only a function of the vi’s, which are
assumed to be weakly correlated given that they are the outputs
from the linear dynamic blocks. Next, as shown by Eq. (18), the
parameters associated with the linear and quadratic effects for a
particular variable i are only correlated with each other, which is
within the input variable they represent, i.e., they are not cross cor-
related. However, this is not true for the interaction terms as cross
correlation is evident. Even so, one way that this can be addressed
during model building is by dropping the interaction terms that ad-
versely affect accuracy as revealed by test data analysis. Hence,
from this Jacobian information analysis there is evidence that the
model identification approach of the proposed approach is well
equipped to address highly correlated inputs.

On the other hand, this ability is not true for model structures
that are linear in parameters such as the popular class of Nonlinear
Auto Regressive Models with eXogenous (NARMAX) variables. The
NARMAX form that corresponds to the second order Wiener model
is obtained by substituting Eq. (5) into the DT form of Eq. (2) and
expanding out the linear terms giving:
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gt ¼ a1yt�Dt þ a2yt�2Dt þ a3yt�3Dt þ � � � þ
X

i

ðbi;1xi;t�Dt

þ bi;2xi;t�2Dt þ � � �Þ þ
X

i

ðvi;1x2
i;t�Dt þ vi;2x2

i;t�2Dt þ � � �Þ

þ
X

i

X
j

ðci;j;1xi;t�Dtxj;t�DtÞ þ � � � j – i ð19Þ

with

V ¼

@gt
@a1

@gt
@a2

� � � @gt
@bi;1

� � � @gt
@biþ1;1

� � � @gt
@vi;1

@gt
@viþ1;1

� � �
@gtþ1
@a1

@gtþ1
@a2

� � � @gtþ1
@bi;1

� � � @gtþ1
@biþ1;1

� � � @gtþ1
@vi;1

@gtþ1
@viþ1;1

� � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
66664

3
77775
ð20Þ

where

@gt

@a1
¼ yt�Dt ;

@gt

@a2
¼ yt�2Dt . . . ;

@gt

@bi;1
¼ xi;t�Dt ;

@gt

@bi;2

¼ xi;t�2Dt ; � � � ;
@gt

@vi;1
¼ x2

i;t�Dt ;
@gt

@ci;j;1
¼ xi;t�Dtxj;t�Dt ; . . . ð21Þ

Thus, the partial derivatives with respect to the a’s are serially cor-
related as they depend on the lags of y. Likewise, the others are
cross correlated as they depend linearly on correlated inputs. This
analysis shows the detriment of using models that are linear in
parameters when the inputs are correlated, especially when the
objective is cause and effect modeling. Yet, another drawback is
the large number of terms required by NARMAX models to address
the equivalent effects of the proposed method. More specifically, for
a system with p inputs, the number of NARMAX terms for equiva-
lency to the proposed approach is nterms = 4p + 5p2 + 2p4. Therefore,
for 11 inputs (the number in the final model in this work),
nterms = 29,931, which is prohibitively large and thus not practical.
A study that directly evaluates the aforementioned limitations of
NARMAX is given in [26]. The data were simulated with random
noise under the Model given by Eqs. (1) and (2) with two inputs.
The equivalent and exact NARMAX structure under this model con-
sisted of 60 terms. For the training data, the inputs were highly cor-
related and were uncorrelated for the test data set to mimic free
living training data and to evaluate cause and effect modeling,
respectively. Due to the limitations cited above, NARMAX per-
formed extremely poorly.

3. The study

This section presents the details of the data collection and mod-
eling results using data provided by a type 2 diabetic (T2D) subject
– the first author of this article. Hence, it was not necessary to ob-
tain Institutional Review Board (IRB) approval. The subject was

male, 50 years old at the start of the study, type 2 diabetic, and
in good health with a body mass index (BMI) of 27.9 kg/m2. The
subject was not on diabetic medication or insulin.

To obtain a sufficiently fast sampling rate necessary for dis-
crete-time (DT) dynamic glucose modeling, the MiniMed Continu-
ous Glucose Monitor CGMS� System GoldTM (Medtronic Minimed,
Northridge, California) was used to provide glucose measure-
ments. The glucose monitor requires the subcutaneous insertion
of a sensor, typically in the torso, and assesses interstitial glucose
at a reported rate of one sample every five minutes. The intersti-
tial glucose measurements are used to infer blood glucose levels.
The sensors were replaced weekly, which resulted in one to two
hours of no measurements for initialization. The CGMS monitor
is self-calibrating but is referenced directly to measured blood
glucose values obtained four times daily from a blood glucose lan-
cet meter. The subject in this study obtained these values from his
personal One Touch Ultra� blood glucose meter (LifeScan, Inc.,
Milpitas, CA).

The activity measurements were obtained using the Sense-
Wear� Pro3 Body Monitoring System (BodyMedia Inc., Pittsburgh,
PA). The SenseWear� Body Monitoring System generated the val-
ues for the twenty activity variables. The SenseWear� Armband,
shown in Fig. 2, utilizes pattern detection algorithms [27,28] that
employ physiologic signals from a unique combination of sensors.
The raw physiological data include movement, heat flux, skin tem-
perature, near body temperature, and galvanic skin response (GSR).
The unit collects data using five sensors: heat flux, skin tempera-
ture, near body temperature, GSR, and a two-axis accelerometer.
The heat flux sensor measures the amount of heat being dissipated
from the body by measuring the heat loss along a thermally con-
ductive path between the skin and a vent on the side of the arm-
band. Skin temperature and near-armband temperature are also
measured by sensitive thermistors. The armband also measures
GSR, which is the conductivity of the wearer’s skin that varies
due to physical and emotional stimuli. The two-axis accelerometer
tracks the movement of the upper arm and provides information
about body position [28]. The SenseWear� Armband samples at a
rate of one sample per minute; however, measurements at five
minute intervals were used here to match the sampling rate of
the glucose monitor.

Because the study is free-living, no constraints were placed on
diet or lifestyle. The subject recorded the food ingested, the
approximate serving sizes, the time of eating, and meal durations
in a food log. In addition, the subject also obtained at least four dai-
ly measurements of blood glucose using his One-Touch glucose
meter and entered them into the CGMS for calibration. During a
24 h period, the arm band device was typically removed twice;
once for an hour during a time of low activity, which was most of-
ten in the evening around bed time, and once in the morning for
about 30 min during showering.

Fig. 2. The SenseWear� Armband.
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The full set of input variables considered in this study is given in
Table 1. As shown in this table, the total number of input variables
initially considered in this study was 24. Using nutrition informa-
tion from Calorie King [29], the grams of carbohydrates, fats, and
proteins ingested per meal or snack were determined. Except for
four variables (three nutrient variables and TOD), all other vari-
ables listed in Table 1 were reported by the SenseWear armband.
Development of the final model required finding the best model
that, under an input reduction procedure, minimized the number
of variables and parameters while maximizing test set perfor-
mance. A number of forward and backward strategies were applied
to develop an optimal set of parameters for the model. A forward
strategy is one that defines a minimum set of variables and adds
variables sequentially based on improvements in test set perfor-
mance. A backward strategy starts with the full set of variables
and eliminates variables sequentially based on improvements in
test set performance. The final model was determined from a for-
ward strategy. The first input variable that was selected had the
highest correlation coefficient with glucose. A second variable
was selected only if it had a low correlation coefficient with the
first variable and a high correlation coefficient with glucose. The fi-
nal model had eleven variables: seven activity variables and four
other variables as highlighted in Table 1.

All the measured variables were downloaded daily and merged
into one data file on a weekly basis. The new data were then com-
bined with the previous data files containing all the other data. For
the armband, data missing only for a short period of time (less than
30 min) were interpolated with the average of the values on each
side of the interval of the missing data. Data missing for longer
periods were set equal to the initial steady state values. This was
done to avoid setting them to very high or low values for a long
period and inducing large errors. By setting them equal to initial
steady state values, their deviation values become zero and the ef-
fect of those missing values is removed from the model for that
period.

This study uses three types of data sets. The first one is called
the training set. The data in the training set are used to obtain
the value of the optimization criterion and hence, determines di-
rectly the estimates for the model parameters. The second one is
called the validation set. This set is used to guard against over fit-
ting and when a validation set is used, it is referred to as supervised
training. Under supervised training, while none of the data of the
validation set are used in the objective function, the model perfor-
mance on this data set is used to control the direction and progress
towards optimality. Conversely, when the model is trained without
influence from fit of another data set, the training is said to be
unsupervised, and this set is called the test set.

The objective of this modeling problem is to maximize the true
but unknown correlation coefficient between measured and fitted
glucose concentration that is defined as qy;ŷ and estimated by rfit.
More specifically, under this objective a model is declared useful,
if, and only if,

qy;ŷ > 0 ð22Þ

The meaning of this criterion is that glucose predictions from the
model decrease and increase with measured glucose concentrations
beyond some degree of mere chance, i.e., there is true positive cor-
relation. Notwithstanding, the closer this value is to the upper limit of
one (1), the more useful the model. Therefore, to achieve this objec-
tive, one seeks to identify a model under Eq. (2) with a sufficiently
large value of rfit. The approach used involves splitting the data into
two sets and using the training set to build the model and the test-
ing (or validation) set to evaluate the model against data that were
not directly used by the optimization process to estimate the model
parameters. However, due to the highly complex mapping of the
parameters into the response space of rfit, the following indirect cri-
terion was used:

Maximize rfit by Minimizing SSEH ¼
XnDt

t¼Dt

ðy1 � ŷtÞ2

Subject to : fi > 0; si > 0; hi P 0 8i

ð23Þ

As indicated, Eq. (23) was used under the assumption that min-
imizing SSE is equivalent to maximizing rfit. While there is no for-
mal proof for this assumption, experimental evidence supports a
strong tendency for this relationship. In Section 4, one such graph-
ical illustration is provided which supports the use of Eq. (23) as an
effective indirect criterion for maximizing rfit.

In Eq. (23), H is a vector representing the dynamic and static
estimated parameters (i.e., sai, si, fi, hi, for all i, and all the steady
state parameters in Eq. (2)). These constraints and the physical
meaning of the parameters offered advantages in setting initial
guesses over using Eq. (4) directly. Optimization was carried out
using the Solver tool in MS Excel�. While there is no guarantee
of reaching the global minimum in this context of nonlinear regres-
sion, the strategy consisted of using several starting values to in-
crease confidence. Depending on the size of the training data set,
the optimization step could take several hours.

A model that is nonlinear in parameters, such as the proposed
structure, does not have the condition that the sum of the residuals
equal 0 as in the case of linear regression. However, under Eq. (23),
the sum of the residuals in training should be small and thus,
allowing for a secondary (or lesser) criterion on the closeness of
yt and ŷt ; i.e., for accuracy. The measure of accuracy used here is
defined as the average absolute error (AAE) and is given by Eq.
(24):

AAE ¼
Ptfinal

t¼tinitial
jyt � ŷt j

M
ð24Þ

where M = the number of glucose measurements between tinitial and
tfinal. Hence, accuracy is judged to increase as AAE decreases.

Table 1
The initial (24) and final (11) sets of input variables.

Initial inputs Final inputs

Food Carbohydrates Carbohydrates
Fats Fats
Proteins Proteins

The SenseWear�

Armband
Transverse accel –
peaks

Transverse accel –
peaks

Longitudinal accel -
peaks

Longitudinal accel –
average

Longitudinal accel –
average

Transverse accel – MAD

Transverse accel -
average
Transverse accel – MAD
Longitudinal accel – MAD
Heat flux – average Heat flux – average
Skin temp – average Near-body temp –

average
Near-body temp –
average
GSR – average GSR – average
Step Counter Energy expenditure
Energy expenditure
METS
Physical Activity
Lying down
Sleep
Sedentary
Moderate
Vigorous
Very Vigorous

Circadian Time of Day (TOD) Time of Day (TOD)
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Thus, in addition to sufficiently large rfit values for both the
training and testing/validation data sets, an acceptable model must
also have a relatively small value of AAE in training. This secondary
criterion is not imposed in testing/validation because Eq. (23)
forces small residuals for training data only. Furthermore, as
shown in Section 4, if a model is capable of a high rfit as demon-
strated in training then high accuracy can be obtained with effec-
tive calibration and adaptive procedures.

The models were developed under two different nonlinear sta-
tic structures that are called the ‘‘Reduced Model” (RM) and the ‘‘Full
Model” (FM). The RM consisted only of linear terms (i.e., the a’s in
Eq. (2)) in the model with the elimination of all second order terms
in Eq. (2); the FM consisted of all the terms in Eq. (2). Recall from
the previous section that the RM guards against a decline in accu-
racy due to cross correlation and extrapolation. But, its drawback is
reduced accuracy when the second order static effects are signifi-
cant. As will be shown momentarily, a RM trained on a 2006 data
set fit a 2008 test data set quite well. The 2006 data set has 25 days
data and 2008 data set has 16 days. In addition to using the full
16 days of data in 2008 as a test set to evaluate model longevity,
this data set is used to evaluate model adaptation and calibration.
Model adaptation is when recently collected (i.e., ‘‘on-line”) data
are used to estimate (i.e., ‘‘update”) values of model parameters.
By ‘‘calibration,” it is meant that on-line data, and more specifi-
cally, lancet data in this context, are used to adjust the values
determined by the model. Model adaptation is evaluated under fre-
quent (e.g., CGMS sampling) and infrequent (e.g., lancet sampling)
on-line data collection. Under frequent data collection it was found
that only a small number of days were needed to update model
parameters under Eq. (23) using unsupervised training. Thus, in
this case, a validation set was not used and all the remaining
2008 data formed the test set. However, when using only four
measurements per day for the first seven days for model adapta-
tion, it was found necessary to perform supervised training on
the remaining nine days due to the small number of samples.

All the calibration data are assumed to come from infrequent
lancet data and that it is the only measured glucose data available.
In this evaluation, four values per day were used. These came from
the CGMS measurements that consisted of two high values and
two low values spread out over the time that normal lancet mea-
surements would be taken (e.g., not during sleep). Thus, it is as-
sumed that the lancet meter agrees perfectly with the CGMS for
the purpose of evaluation. It is reasonable to do the evaluation this
way since in this study all cases are evaluated based on the agree-
ment of the model to the CGMS data. However, in practice, a lancet
meter will be used and calibration will be relative to this device.
The calibration scheme consisted of two steps. The first step made
an adjustment to correct for systematic bias under the assumption
that previously determined deviations from measured values are
random. Thus, the first correction uses the average of these previ-
ous deviations and adjusts the model as follows:

ŷt ¼ ĝt þ �et� ¼ ĝt þ
Xn

i¼1

ðyt�
i
� ĝt�

i
Þn�1 ð25Þ

where t�i is the time of the ith glucose measurement and n is the
number of measurements used. The second correction is a local cor-

rection so that the modeled glucose concentration is ‘‘adjusted” to
agree with the most recent measurement and as time passes it ad-
justs back to the value given by Eq. (25) as described through Eq.
(26)

Yt ¼ ĝt þ ðyt� � ĝt� Þk
1�t�
Dt

Subject to : t P t�; 0 < k < 1
ð26Þ

where k is an adjustable constant. This scheme is evaluated under
both validation and testing using the 2006 RM and the 2008 data
sets. The final evaluation of this study examines the potential of
the proposed method to improve k-steps-ahead (KSA) prediction
for various values of k. The KSA prediction model form of the pro-
posed method allows easy determination of the contributions of
the inputs and outputs separately. Thus this study will reveal the
importance of including inputs for predictive modeling as the pre-
diction horizon increases.

4. Results and discussion

Table 2 gives the first set of results to be discussed. This table
consists of training and validation results for both periods of data.
Thus, all the cases shown here involved supervised training. For the
duration of training given, the models in Table 2 are the best fits in
validation and serve as a benchmark for comparison of other mod-
els. As shown, three cases of modeling the 2006 data are given and
one case of modeling the 2008 data is given. The first three models
in Table 2 are on the 2006 data. The first one was developed from
20 days of data for training while using the other 5 sequential days
for validation. (Each case will be referred to by the number of train-
ing days to the number of validation or testing days, e.g., a 20/5
model would have 20 days in training and 5 days in validation or
testing.) As shown, for 2006 20/5 FM, training rfit, and AAE are
0.78, and 12.4 mg/dL, respectively. To give a relative context to
AAE, AAE was determined from 26 pairs of replicated One Touch�

Ultra blood glucose meter readings collected during this study.
This value was found to be 15.3 mg/dL and significantly greater
than both the 20/5 training AAE and the validation AAE of
13.3 mg/dL. For the 20/5 model, the rfit values in training and val-
idation are 0.78 and 0.70, respectively, strongly supporting the
ability of the model to track glucose response using the eleven in-
puts. A plot of fitted and observed glucose concentration over time
for this case is shown in Fig. 3 for the validation period. As these
plots show, the model correlated quite well with variations in ob-
served glucose level except for some of the most extreme hypogly-
cemic response and some of the higher frequency behavior.

A 20/5 evaluation was also produced for the 2006 data set with
TOD removed. For this case, unsupervised training gave an rfit and
AAE of 0.75 and 12.9 mg/dL, respectively; a little worse than the
model with TOD. The testing performance was also just slightly
worse with rfit and AAE of 0.67 and 15.0 mg/dL, respectively. Thus,
for this data set, TOD appears to have a small but significant con-
tribution to model accuracy. Fig. 4 shows the training progression
of SSE and rfit for each iteration in the minimization of SSE. As
shown, as SSE decreases, rfit tends to increase with each iteration

Table 2
Training and validation results for different models using data from the same period.

Data period Model type Model name Training Validation

# Days rfit AAE (mg/dL) # Days rfit AAE (mg/dL)

2006 Full 20/5 FM 20 0.78 12.4 5 0.70 13.3
2006 Full 7/18 FM 7 0.80 11.6 18 0.64 14.5
2006 Reduced 20/5 RM 20 0.62 14.8 5 0.61 14.6
2008 Full 7/9 FM 7 0.75 13.4 9 0.57 11.8
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until leveling off in support of using the objective criterion given by
Eq. (23) as a way to maximize rfit.

Another informal way of analyzing the fit is by plotting mea-
sured glucose concentration by paired fitted values. This plot is sta-
tistically represented by the value of rfit. More specifically, as rfit

increases towards 1, the data lie more along a line. The Clarke Error
Grid analysis [30] is a popular procedure that divides this plot into
regions or zones to aid in the diagnosis of specific types of poor
performance, especially at the extremes. This plot is given in
Fig. 5 for the 2006 20/5 FM validation results. As shown, there
are five zones from A to E. Zone A is the region where the fitted val-
ues are within ±20% of the measured value and the model is con-
sidered sufficiently accurate. Zone B is when fitted values are
more than ±20% different from measured values and serves as a
caution or warning zone. Zones C, D, E are ‘‘red flag” areas because
of the potential for critical misdiagnosis of hypo- and hyperglyce-

mic glucose levels. The 2006 validation data in Fig. 5 show most of
the values in Zone A (90.1%), a small number in Zone B (7.4%) and a
much smaller number in Zones C–E (2.5%); thus, provides further
support for the proposed approach.

For the 2006 data set, the correlation between carbohydrates
and proteins, between carbohydrates and fats, and between fats
and proteins, were 0.82, 0.87, and 0.88, respectively. These correla-
tions were broken down as the inputs passed through the Wiener
network as evidenced by the weak correlations of their corre-
sponding dynamic variables. More specifically, the correlation be-
tween the outputs from the dynamic blocks, i.e. vi’s, for
carbohydrates and proteins, carbohydrates and fats, and fats and
proteins, were �0.03, 0.11, and �0.02, respectively.

The next case in Table 2, the 2006 7/18 FM case, was done to
determine if an accurate model could be determined using a much
smaller set of training data and to evaluate validation performance
over a much longer period of time. As the results show, to no sur-
prise, training is better for the smaller training set (i.e., 7/18) and
although the validation results are slightly worse, they are still
quite good. For the third case in Table 2, the 20/5 RM case, the
training rfit of 0.62 is much lower than the full model’s value of
0.78 although AAE is still quite good at 14.8 mg/dL. The drop in
performance is an indication of the necessity of modeling second
order static behavior for this subject. For validation, the 2006 20/
5 RM results (rfit = 0.61 and AAE = 14.6 mg/dL) are closer to the
2006 7/18 FM results (rfit = 0.64 and AAE = 14.5 mg/dL). Thus,
although RM performance is worse, this loss might be acceptable
if RM shows long-term stability and accuracy. This evaluation will
be done when the results in Table 3 are reviewed.

The last case in Table 2 is the 7/9 FM for 2008. In comparison to
the 2006 7/18 FM, the performance is similar with better training
for 2006. In validation, the model for 2008 is better for AAE
(11.8 mg/dL versus 14.5 mg/dL) but slightly worse for rfit (0.57 ver-
sus 0.64). The smaller AAE with a smaller rfit for 2008 is due to less
spread in glucose variation over the data collection time period.
Nonetheless, both cases performed well and support efficacy of
the proposed approach. The 2008 FM case will serve as the bench-
mark for the cases that are presented in Table 3.

Table 3 contains modeling results of applying the 2006 20/5 RM
to the 2008 data. The first two cases used 2008 data sampled at five
minute intervals, or 12 samples per hour, to estimate the linear
static coefficients while maintaining all the dynamic parameters
at their 2006 20/5 RM values. In these cases the estimation proto-
col was to apply the least squares criterion until convergence was
achieved. This was done without interruption and so, was done un-
der unsupervised training. Thus, no 2008 data outside of the training
periods had any influence on values of the parameters. More spe-
cifically, the 2008 data outside of the training periods were test
data. This case evaluates the model adaptation potential of the pro-
posed approach under continuous glucose sampling (CGS) rates (as
in type 1 monitoring and automatic control) to adjust a minimum
set of parameters (i.e., the static linear parameters only). When
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Table 3
Modeling 2008 data using the 2006 20/5 reduced model.

Training Evaluation

Sampling rate # Days rfit AAE (mg/dL) Type Calibration # Days rfit AAE (mg/dL)

12/h 4 0.51 15.3 Testing No 12 0.45 15.9
7 0.47 17.0 No 9 0.48 12.1

All training was on 2006 Data Testing No 16 0.42 16.1
Yes 16 0.60 14.1

4/day 7 0.69a 24.9a Validation No 9 0.48 14.8
(0.47) (19.8) Yes 9 0.60 12.9

a The top value in this cell is for the data sampled at a rate of 4 samples per day and the bottom value (in parentheses) is for the data sampled at 12 samples per hour.
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attempting to train the model using 1 or 2 days of data, severe
over-fit resulted on the test data. Three days of training did not se-
verely over-fit the training data at convergence but did however
result in an AAE of 21.8 mg/dL (with a large systematic bias) and
a rfit of 0.43. As Table 3 shows, four days of training data greatly im-
proved test results giving an AAE of 15.9 mg/dL and a rfit of 0.45.
The only other case considered was for seven days of training,
the same number days as for the base case in Table 2. The results
for this case were nearly as good as the 2008 7/18 FM base case
giving an AAE of 12.1 mg/dL and rfit of 0.48. Fig. 6 plots CGMS glu-
cose concentration and the modeled glucose concentration for the
second case in Table 3. The gap around July 14th represents miss-
ing CGMS data and the data before this gap is the training data for
this case and the data after the gap is the testing data. As one can
see, the model is quite stable and directionally follows GGMS glu-

cose behavior quite well. Thus, when using the RM, the proposed
approach appears to have the potential for long-term model stabil-
ity and the capability of model adaptation using only a few days of
CGMS data.

The next two cases in Table 3 evaluate the long-term effective-
ness of the proposed approach when the 2006 20/5 RM is applied
directly without any training. The difference in these two unsuper-
vised training cases is in the use of infrequently sampled data for
calibration using Eq. (26). The number of samples is 4/day which
is the amount of data requested by the CGMS protocol for on-line
calibration from the personal glucose meter. Without calibration
the results were: AAE = 16.1 mg/dL and rfit = 0.42. With calibration
the results were: AAE = 14.1 mg/dL and rfit = 0.60. The results for
this case are plotted in Fig. 7. The infrequent blood glucose (BG)
samples are shown by diamonds on this plot. As seen in this plot,

Table 4
The estimated dynamic parameters for the 20/5 FM for 2006 data set that are defined in Eq. (1).

Input variable i si (min) fi sai (min) hi (min) 2sifi (min)

Carbohydrates 1 30.2 1.4 �3.2 15 83.0
Fats 2 238.4 0.9 20.7 15 408.1
Proteins 3 1688.0 0.3 �73.8 15 918.9
Transverse accel – peaks 4 25.1 0.1 �13.1 0 3.4
Heat flux – average 5 91.3 0.1 5.4 0 14.4
Longitudinal accel - average 6 98.9 9.3 �37.3 0 1843.3
Near-body temp – average 7 483.1 1.0 26.9 0 976.1
Transverse accel – MAD 8 59.3 0.9 132.2 0 103.5
GSR – average 9 902.8 0.05 �157.4 0 85.1
Energy expenditure 10 264.7 2.5 �55.5 0 1316.8
Time of day 11 98.2 0.01 �0.5 0 2.0
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the model with calibration correlates quite well with the measured
CGMS glucose concentrations. These results strongly support effi-
cacy of the proposed approach, especially given that they were
produced by a model that was almost two years old and used only
4 glucose measurements per day for calibration.

The last two cases in Table 3 evaluate adaptive estimation of the
linear static parameters using only 4 samples/day for seven days
(i.e., 28 samples total) starting from the 2006 20/5 RM. Since the
amount of data is not sufficient for unsupervised training, validation
sets were used to supervise training. Observe that the second of
these two cases also used four measurements per day for calibra-
tion (using Eq. (26)) and for validation data. These two cases were

done to evaluate the monitoring potential of the proposed ap-
proach using a subject’s personal glucose meter data for model
adaptation and on-line calibration since the 4 daily measurements
were the only 2008 data used here. Without calibration, the nine
days of validation gave an AAE = 14.8 mg/dL and rfit = 0.48. With
calibration, the performance improved to an AAE = 12.9 mg/dL
and rfit = 0.60. These results are plotted in Fig. 8. Thus, it appears
the approach also has potential in noninvasive glucose monitoring
using personal meter data for model adaption and calibration.

Next, the individual dynamic characteristics of each input are
examined to gather insight of their effect on dynamic glucose
behavior. This can be accomplished by examining the values of
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Fig. 9b. Overlay plots for transverse accel-peaks (top) and heat flux (bottom). The scales on the left are for observed glucose (mg/dl) and the scales on the right are for the vi’s.
The light color lines are glucose and the black lines are the vi’s. These plots show how activity matches well with high and low components of glucose response frequencies.
(For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)
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black lines are the vi’s. These plots illustrate support for significant circadian effect on glucose behavior for this subject. (For interpretation of the references in colour in this
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the dynamic parameters and from plotting the vi’s over time. For
this discussion the 2006 20/5 FM results are used. For this case
the dynamic parameters are given in Table 4 and selected plots
of the v’s are given in Figs. 9a, 9b and 9c. These plots also contain
glucose response and thus, represent individual dynamic behavior
laid over its corresponding glucose behavior. As such, these plots
provide insight on the dynamic contributions of the different in-
puts to the overall dynamics of glucose response.

First, the dynamic effects of the nutrient components are ana-
lyzed. Fig. 9a contains plots of vi over time for the carbohydrates
and fats variables (protein is not shown for space considerations)
and over laid by the measured glucose values. Note that these plots
have two vertical axes, one on the left for BG and one on the right
for vi. As shown in Fig. 9a, the periodic behavior of these variables
is quite different and covers a very wide range. Carbohydrates
(CHO) have the smallest effective residence time among the food
variables as seen from the last column of Table 4. The overall effec-
tive residence times of fats and proteins are more than 4 and 11
times, respectively, greater than that for carbohydrates. These val-
ues provide a measure of the relative rates at which these three
nutrients impact the blood glucose for this subject. From these
plots it can be seen that the effects of carbohydrates are much fas-
ter and relatively short term. In addition, the effects of fats from
different meals generally seem to overlap and their v’s reach min-
imum levels once in a 24-h period.

Fig. 9b gives the time series plot for v4 (Transverse accel. –
peaks) and v5 (heat flux). As shown in Fig. 9b, v4 matches high fre-
quency behavior of glucose quite well. It is found that v8 (from
Transverse accel. – MAD) matched the highest frequency behavior
the best, but the plot has not been included for space consider-
ations). Nevertheless v4, even with a slightly lower frequency
behavior than v8, still matches the boxed region (representing
the low glucose values changing quickly with high amplitudes)
around 9/27 very well. The validity of this very low level, highly
oscillatory behavior of glucose seemed questionable at first but gi-
ven the excellent match with v4, and with the food components
exhibiting different dynamic behaviors, it appears to be valid.

In addition, one can also examine the plots for v5 (heat flux)
which appears to match the low level of these data well and other
patterns in the data on a period of roughly a half of a day; but its
periodicity does vary, especially for the validation data. The very
low levels appear between 4:00–5:00 am, which were during
sleep. Given that the heat flux is the amount of heat loss through
the skin, it is expected that this loss would be the least during
times corresponding to the longest periods of low activity. How-
ever, during sleep, other factors, such as changes in covering, room
temperature, dreaming, etc., can also affect heat flux. Thus, it ap-
pears that the combination of v4, in terms of periodicity (frequency
and amplitude), and v5 in terms of low level, validates the behavior
of the boxed region and, therefore, appears to be quite useful in
explaining this behavior.

The final analysis concerns the only variable that was included
from observing patterns in the data – the time of day (TOD). This
variable is the 24 h clock. Its dynamic output, v11, is plotted in
Fig. 9c. In a 24 h cycle, the pattern of v11 was very periodic with
the minimum occurring around 4:30 am each day. The circadian
rhythms of glucose and insulin in humans are well reported in lit-
erature [31,32] and the findings from this analysis also indicate
that there appears to be an ‘‘internal clock” for this subject contrib-
uting to glucose behavior, especially during periods of low effects
from food such as during sleep. To establish this more conclusively
and widely, more subjects will need to be evaluated under this ap-
proach given its ability to obtain v11. (Also for space considerations,
v6, v7, and v9 are not discussed or shown graphically.)

Next, one might consider the value of this approach for KSA pre-
diction which is predictive ability k sampling periods (i.e., k times

Dt) ahead from the most recent glucose measurement. Note that
since the proposed method does not depend on glucose measure-
ments but only on inputs (i.e. the models are output error models),
it does not suffer from the limitations of KSA prediction; namely,
the need for output measurements and their ability to impact fu-
ture prediction. For this discussion, an additional model is intro-
duced that depends only on glucose measurements that will be
called Model 3 and is described as:

ŷtþk ¼ û0yt þ û1yt�1 þ û2yt�2 þ û3yt�3 þ � � � ð27Þ

Model 3 exploits serial correlation of current and past outputs to
find optimal values for the û0s: Model 2 is determined using the
2006 20/5 FM and Model 3 using measured data for k = 1, 6 and
12. Model 2 had two additional parameters (i.e., ĥ1 and ĥ2) and
Model 3 had four parameters (i.e., û0 to û3). Since for both models
the parameterization was low compared to the amount of data, the
impact of these models can be effectively examined through the
behavior of rfit for the training data. These results are given in
Fig. 10 where rfit is plotted against k for both models.

As shown, rfit increases as k increases for both models. Model 2
approaches Model 1 performance and Model 3 drops rapidly.
Essentially, this indicates that while the outputs can aid in predic-
tion when the number of steps ahead is small, it will not aid much
when the number of steps is greater than 12 (60 min in the future).
However, the results of Model 2 indicate that predictive accuracy is
not limited by the size of k but by the accuracy of the input model,
ĝtþkDt . Therefore, not only can the proposed method play a key role
in feedforward control but also provide critical modeling ability for
model predictive control since insulin infusion can affect glucose
performance much longer than one hour or for k > 12.

5. Concluding remarks

This article presents preliminary evidence demonstrating that it
is possible to accurately model blood glucose concentration for
individuals under free-living conditions for an extended period of
time using an extensive set of food, activity and stress inputs. In
actuality, these variables can be considered as disturbances in that
they act to change glucose levels away from normal levels. By
modeling the effects of these disturbances this work represents a
critical advancement toward the goal to tighten glucose levels for
insulin-dependent as well as non-insulin dependent diabetics. This
accomplishment can aid considerably in understanding how food,
activity, and stress affect glucose behavior on a broad level and,
as shown here, on an individual level. In addition, it may also pro-
vide insight for researchers attempting to understand the pro-
cesses and mechanisms on a more fundamental level involving
invasive variables.
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Fig. 10. rfit versus k for the 2006 20/5 FM under Models 2 and 3.
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The success of this modeling work has been realized due to re-
cent advancements in glucose and activity measurement technol-
ogy. Continued success will depend on progress in sensor
technology to measure critical variables accurately and rapidly.
Preliminary work involving known insulin amounts due to insulin
infusion for a type 1 diabetic has shown tremendous modeling
improvements producing a much higher rfit in training and valida-
tion of 0.90 and 0.96, respectively. This data set and the results can
be accessed on the website: http://www.public.iastate.edu/~drol-
lins/Research%20Data.htm. (The plan is to submit type 1 results
for publication after modeling more subjects.) It seems that one
critical reason for not being able to achieve values of rfit greater
than 0.65 for the test data is probably due to lack of information
about insulin. Some of our future modeling efforts will aim to infer
insulin information from other variables if possible, when the sub-
jects are not using any external insulin.

The ‘‘closing of the loop” for automatic glucose control through
an artificial pancreas usually requires the ability to predict glucose
at least one to two hours ahead in the future. But as discussed in
the last section, the ability to predict glucose that far ahead based
on past glucose measurements is hampered by its low information
content. However, as demonstrated, this critical need can be ful-
filled by an input based model like the one proposed in this work
provided that some accurate information about anticipated behav-
ior is made available to the model. This can be provided in ways
such as using patterns of past behavior or information entered by
subjects about factors under their control such as meals and
exercise.

Our future work will involve modeling more individuals to cre-
ate the knowledge base to fully exploit the unique information that
this approach provides. Ambitiously, our long-term goals include:
1. the development of a truly noninvasive glucose monitoring sys-
tem from easily measured input sensor data; 2. the development of
automatic model-based control methods – in particular, feedfor-
ward and model predictive control using multiple input modeling;
and 3. providing medical workers with the knowledge via software
development that will increase their understanding of the factors
affecting glucose and tools for improved glucose regulation.
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