
 1

Open Source Software Development, Innovation, and Coordination Costs

by

Jean-Philippe Bonardi, Richard Ivey School of Business, University of Western Ontario

and

Thierry Warin, Middlebury College

March, 2007

MIDDLEBURY COLLEGE ECONOMICS DISCUSSION PAPER NO. 07-01

DEPARTMENT OF ECONOMICS
MIDDLEBURY COLLEGE

MIDDLEBURY, VERMONT 05753

http://www.middlebury.edu/~econ

 2

OPEN SOURCE SOFTWARE DEVELOPMENT,

INNOVATION, AND COORDINATION COSTS

JEAN-PHILIPPE BONARDI
Richard Ivey School of Business
University of Western Ontario

London, Ontario, Canada, N6A 3K7
Email: jbonardi@ivey.uwo.ca

THIERRY WARIN

Middlebury College
Department of Economics

Vermont, 05753, USA
& Harvard University

Minda de Gunzburg CES
Email: twarin@middleburry.edu

Open source is often presented as a very promising governance structure for the

development of software in the Internet world. One of its greatest advantages is

that it enables and integrates the flow of innovation coming from many unrelated

developers. We extend previous inquiries by showing that, due to information

communication problems, this governance structure is in fact more efficient for the

development of incremental innovations rather than radical innovations.

Implications are drawn in terms of the future of the open source system, the

economics of innovation and public policy.

(Open source software; radical innovation; governance structure)

 3

ABSTRACT
Open source is often presented as a very promising governance structure

for the development of software in the Internet world. One of its greatest

advantages is that it enables and integrates the flow of innovation coming

from many unrelated developers. We extend previous inquiries by showing

that, due to information communication problems, this governance

structure is in fact more efficient for the development of incremental

innovations rather than radical innovations. Implications are drawn in

terms of the future of the open source system, the economics of innovation

and public policy.

(Open source software; radical innovation; governance structure)

 4

INTRODUCTION
Open source software has recently been the object of considerable attention

from the press, policy-makers and researchers (Blind & Edler, 2003). Crudely

defined, open source software is software developed through an Internet

community of volunteer developers, in which the source code – meaning the

higher-level programming instructions that tell a computer what to perform –

is made available to everyone. As such, the source code is non-proprietary

and can be freely used, copied or distributed with or without modifications

(Stallman, 1999). This system stands at odds with the one used by software

companies since the 1970s, which have generally been choosing to withhold

source codes to protect their proprietary software and reap commercial profits

related to their innovations (Burgelman & Meza, 2001)..

Open source software – especially using popular examples such as the

operating system Linux or the Apache Web server – has been the subject of

several investigations in the economics and management literature

(Krishnamurthy, 2003; Lerner & Tirole, 2001). A key driver of these

investigations has been to understand why volunteer developers would decide

to work for free to create public goods, something that has been seen by some

as a challenge to standard economic principles, particularly regarding the

relationships between individual incentives and innovation (Dalle & Jullien,

2003). As a response to this challenge, existing literature stresses the role of

short-term benefits in terms of using the software, since these developers are

 5

often professional programmers trying to fix bugs and adapt the software to

their own needs (Johnson, 2002; von Hippel, 2001; von Hippel & Krogh,

2003). Other work focuses on delayed benefits related to the fact that

developers’ contributions to the most successful innovations are well

identified and therefore create positive spill-over in terms of peer recognition

and future career opportunities (Kollock 1999; Lerner & Tirole, 2002). Case

studies confirm that these delayed benefits play a very important role in the

open source community (Hertel, Niedner & Herrmann, 2003).

Evidence, however, suggests that a puzzle remains: if open source

developers are mainly driven by these delayed benefits, one would expect

outside developers to take risks and concentrate their efforts on real

technological breakthroughs, i.e., software innovation with the potential to

change the way people are doing things and therefore the likelihood of

generating peer recognition and future career opportunities. In the rest of the

document and following well-established literature in the economics of

innovation, we will use the term “radical innovation” to characterize those

breakthroughs, whereas more mundane market innovation will be called

incremental (Abernathy & Clark, 1985; Damanpour, 1991; Henderson &

Clark, 1990). The radical or incremental adjectives are not used in a market

based definition where only the market would qualify ex post an innovation

as radical or incremental (see the well-known example of Sony’s Betacam).

Here, we consider an ex ante definition that relies on the technological aspect

 6

of the product, voluntarily putting aside some potential network economies

that could undermine this definition.

However, empirical evidence shows that in fact the opposite is true:

open source projects, even the most successful ones such as Linux, tend to be

incremental innovations compared to that which was already available for

users. It cannot be denied that open source software is generating

innovations and that some of these innovations are creating value and

developing market shares, but a significant number of them remain

incremental innovations rather than radical ones. Why is that? What is the

incentive mechanism one needs in order to develop a radical innovation?

The purpose of this paper is to explore this puzzle. We suggest that one

idiosyncratic aspect of open source software development has been neglected

by existing literature: the way information is exchanged between the project

leader, i.e., the one at the origin of the innovation, and the developers.

Because information is exchanged exclusively through e-mail messaging,

actors function in an almost perfect information environment, in which it is

difficult to determine who will make a strong commitment to develop the

innovation. Hence, radical innovations are more difficult to plan and require

a higher level of commitment by developers than would incremental

innovation. The paper focuses only on the locus of innovation and type of

innovation concomitantly with the possible coordination problem.

 7

The first section of the paper explores the boundaries of open source as

a governance structure. The second presents the model’s basic set up. Section

3 then introduces communication problems, examines the open source

development of an innovation in a situation of incomplete information and

derives sequential equilibria. The last section concludes and discusses the

implications of our results for the future development of open source as a

governance structure for software innovation, as well as for public policy

purposes.

OPEN SOURCE AS A GOVERNANCE STRUCTURE
Our starting point in this paper is to consider open source as a governance

structure (Garzarelli, 2002; Williamson, 1985) with specific characteristics

different from those of software companies (McCormack et al., 2001). Here,

we underline the main aspects of this governance structure. The development

process in an open source environment generally works in the following way:

a project leader designs the first program, writes the basic lines of codes and

makes them available to other developers (Raymond, 1999). The role of this

leader is key to the open source system, as this is the first innovation attempt

by the project leader. This initial attempt either attracts or does not attract

further developers and triggers the software development process. The rest of

the process relies on outside developers working on debugging and creating

patches to improve the quality of the program, as well as writing new lines of

code to add new features and applications (Kollock, 1999). In most cases, it is

 8

also the leader who decides whether to include the debugs and patches

proposed by the other developers or to discard them.

Outside developers who participate as volunteers in the project

development are therefore the key factor in the open source system. As

suggested earlier, existing economics literature has gone a long way in

explaining why those developers might offer their services free of charge

(Lerner & Tirole, 2002). Equally important, however, is the question of which

projects outside developers will decide to participate in and how they will

allocate their time and efforts among these projects. In effect, as noted by

Raymond (1999), the pool of capable developers is limited, implying that, as

the open source movement continues to develop, developers carefully consider

various projects and make different levels of commitment to these projects.

They can commit most of their time and effort to a project that they find

particularly interesting and useful, or they can make only a weak

commitment to many projects, thus making small contributions to numerous

new versions of open source software. There seems to be a wide range of

developers’ behaviors regarding this strategy. Hertel et al. (2003), for

instance, show that developers spend more time on Linux development when

they feel that their contribution is highly important to the software itself.

A developer’s decision whether or not to participate may also depend

on the level of commitment made by others. In effect, before deciding to make

a strong commitment to a very innovative project, a developer will probably

 9

need to know whether others are ready to make the same kind of

commitment. If they are not, then a very innovative project - one that is likely

to demand the greatest amount of time, effort and creativity - will not hold its

promises. Note that existing literature has stressed the role of an installed

base of developers and has studied its effects on the probability of an open

source project reaching completion (Johnson, 2002), therefore considering a

network externality. Here, we concentrate on another type of externality,

which is not based on the crude number of other developers, but rather on the

level of commitment a developer perceives among others interested in the

project.

Note also that this “commitment externality” affects not only potential

developers, but also the project leader himself. Even though he might be

convinced that his project has the potential to become a radical innovation,

he might decide to invest only some of his time and effort into it because he

knows he will need the support of other strongly committed developers to

make it work. To some extent, one can even argue that a project leader tries

to gauge the interest in a potential innovation by launching it on the

Internet.

In many respects, the project leader plays a key role. While the leader’s

reputation may encourage people to commit to the project, along with the

incentive discussions in the literature, there is another benefit of this

leadership: the centralization of information. This centralization helps reduce

 10

the asymmetries of information due to the horizontal organization of an open-

source project compared to the vertical organization of a proprietary

development. Indeed, an open source development relies on a network of

developers around the world, rather than being centralized in one or just a

few places, as is the case with the proprietary software industry.

Asymmetries of information are present in vertical organization as

well as horizontal. But the degree of centralization of a vertical organization

reduces these asymmetries. For the horizontal organization, asymmetries of

information can be reduced in many ways. First, from a non-exhaustive list,

the object-oriented nature of software reduces the asymmetries of

information by clustering and focalizing developers on some specific pieces of

software. Second, the use of collaborative tools – one being developed by open

source developers is eGroupWare – introduces a degree of centralization

almost equivalent to a proprietary software development firm. Although

these two conditions are necessary, they are not sufficient to trigger a radical

innovation. The third condition is important: the leadership. Indeed, the

leader will impose the goals, the future developments, and, more importantly,

the agenda. On this latter point, it is interesting to note that the website

Sourceforge.net created an index and a ranking based on this index to

measure the activeness of open source projects.

How then can the project leader and developers evaluate the level of

commitment that others are ready to make? The answer is that, in an open

 11

source community, they do this almost exclusively through e-mail

messaging1. This process deserves attention. In effect, the open source model

relies on modes of communication that are not as “information-rich” as

others, such as face-to-face meetings: risks of miscommunication or

misunderstanding are therefore potentially greater. In the next section, we

create a model of open source software development that takes this

characteristic into account.

MODEL SET-UP
PLAYERS

We represent a two-player game, 1,2i = . One player is the project leader and

the other is the outside developer. The project leader would like the developer

to take part in his project, while the developer must choose whether to make

a strong or a weak commitment to the project.

At the beginning of each game, players make their decision based on

what they know about the state of nature: ,N A B= . A corresponds to a

1 The relationships between the open source movement and the Internet are indeed very close. Some argue

that it is the widespread use of the Internet that has caused the recent explosion of interest in this 20-year-

old open source model. The Internet has allowed the open source movement to prosper because it has

considerably lowered communication and collaboration costs for potential users and developers. The open

source movement has existed at least since Richard Stallman's 1984 effort to develop the GNU software

(Stallman, R. (1999). The GNU Operating System and the Free Software Movement. Open Sources: Voices

of Open Source Revolution. C. Di Bona, S. Ockman and M. Stone. Sebastopol, O'Reilly and Associates.).

However, only the rise of the Internet enabled the diffusion of open source efforts.

 12

situation in which the open source software project is an incremental

innovation, i.e., a minor improvement of a program that already exists. B

corresponds to a situation in which the new software has the potential to

become a radical innovation. This dichotomy might raise questions in the

context of software. Software, in effect, is generally developed through an

incremental process. So what constitutes a radical innovation in software?

We consider here that a radical innovation is a project for which there is no

pre-existing template software architecture (von Krogh et al., 2003). The

architecture of a software characterizes the functionality of specific modules

within the software and the interdependencies and interactions among these.

In the case of a radical software innovation, therefore, the development

process itself is a total discovery for developers.

In the game, it is assumed that the leader and the developer have

similar pay-offs and cost structures. The leader has discovered an innovation

and would like other developers to participate. But he must also determine

whether or not to invest a lot of time and effort in the project, as must the

developer. This decision will be based upon how one developer perceives the

other developer’s level of commitment. Both players wish to maximize their

profits. Following Lerner & Tirole (2001), we assume that these profits are

mainly delayed benefits, i.e., ways of creating strong signals about talents

and innovativeness. Similarly, costs are primarily the opportunity costs of the

 13

time and effort the developer spends contributing to the open source project.

The objective functions can be represented by:

 () max ()i iO N C= Π (1)

where iC represents the total cost of developer i in the state of nature A or

B .

STRATEGIES

The leader and the developer each have two options: weak commitment (m)

or strong commitment (M) to the project. Weak commitment means that the

developer plans to address some issues but will also continue to work on

many other projects in parallel. On the other hand, strong commitment

means that the software developer plans to devote most or all his time and

effort to the project. The total cost function is:

() ()()

() ()()
;

; , otherwise

m M
i i

i m M
i i

C A C A
C

C B C B

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (2)

By assumption, we consider that:

• In state of nature A , both the leader and the developer are better off

by making only a weak commitment to the project. The innovation is

only incremental and is likely to be modularized, meaning that lots of

other developers might be working on the project at the same time, all

making incremental additions. Making a strong commitment to such a

 14

project would probably be a waste of time and effort, since delayed

benefits would not be high enough to justify that investment.

• In state of nature B , it would be rational for the two players to make a

strong commitment to the development of the radical innovation. The

opportunity cost is lower, and therefore we can write () ()M M
i iC B C A< .

Considering a Bertrand competition without capacity constraint, 2 the

optimal-Pareto solution is thus:

 () () () (){ }1 2 1 2, ; ,m m M MO O A O O B (3)

In such a configuration, payments are () ()m M
i iO A O A> and () ()M m

i iO B O B> ,

and they prevent the prisoner’s dilemma, as represented in Figure 1.

2 It is one of the characteristics of the software industry.

 15

Figure 1. Decision tree.

 16

COMMUNICATION IN THE CONTEXT OF AN OPEN SOURCE

INNOVATION
In reality, the co-ordination mechanism of the commitment strategies of the

two players in the open source project may be imperfect, as neither of the

players can directly observe or monitor what the other does. Players

communicate only through e-mails. Methods of communication between open

source developers create, in the context of innovation, a situation of ‘almost

perfect information’ (Rubinstein, 1989). Building on Rubinstein’s approach,

we model the interaction between the leader trying to attract developers and

a developer. This interaction takes place within a context of incomplete

information concerning the innovation potential of an open source project.

INCOMPLETE INFORMATION

In order to represent this “noise” in the co-ordination mechanism, we assume

that the project leader has private information on the state of nature. In

other words, he has a clear idea of the potential of the innovation. The project

leader, then, freely passes this information to the other player, the potential

developer. If the innovation is incremental, the leader simply posts the code

on the Internet and does not send additional messages. On the other hand, if

the innovation is radical, he also sends messages to advertise his innovation

and encourage the outside developer to rally to it.

 17

This transmission corresponds to the modeling of co-ordination. Each

player must consider his or her own information, but also the information of

the other player. Therefore, even when both players are certain of the

project’s innovation potential (either incremental or radical), if one actor is

not sure how committed the other is to the project, that player can behave in

ways that are contradictory to behaviors that would have been chosen based

on this certainty.3

To begin the analysis, we assume that the most probable event is state

of nature A , i.e., that the project is an incremental innovation. If B occurs, a

message is sent from the leader to the developer claiming that his new

project might become a radical innovation. The developer receives the

message, understands that the project has the potential to be a radical

innovation, and therefore sends a message back to the leader expressing

interest. The project leader then responds with another confirmation of his

expectations and commitment to the project, etc. This entire exchange is

made necessary by potential failures of the transmission system: the

information contained in the message sent by one of the players has a small

probability of being lost or misunderstood by the other player, 0q > . In

principle, this probability is small because hackers speak a common language

and are all trained to program on Unix. The probability that a message still

3 Here, both developers are volunteers and do not hide information strategically. We can introduce the idea

of firms voluntarily willing to hide this information, but this is not something we consider in this paper.

 18

circulates beyond a very large number of exchanges is thus a priori weak, but

still exists and is not insignificant. Von Grogh et al. (2003) report, for

instance, that in the case of the development of the open source project

Freenet, the average number of e-mails needed before a joiner became a

developer was 23.4.

Assume that, at some point, the communication ceases when the

leader has sent a final message. This project leader in fact ends up in a

situation of partial uncertainty: he knows the developer has expressed

interest and even willingness to make a strong commitment to the

development of the radical innovation. However, the project leader, not

having received an e-mail from the developer, is left wondering whether the

developer is still convinced that he, the project leader, is in fact strongly

committed to the project. In other words, has the developer already started

working hard on developing the radical innovation, in which case her last e-

mail might have been lost? Or has she not responded because she did not

receive the previous message from the project leader and therefore doubts

that he is still committed to the development of the innovation?

SEQUENTIAL EQUILIBRIA

We consider the probability, q , that a message sent by one of the

players may be lost or misunderstood. The game has an infinite horizon

because of the back-and-forth transmission of messages. The procedure of

 19

sending messages does not form part of the strategy: the real game (the open

source software development itself) begins only when no further messages are

exchanged between the two players, i.e., when both players have decided on

the level of commitment they wish to make to the project.

Formally, we use the following notations to depict this situation:

• 0C , the beginning of the game ; the project leader discovers that the

state of nature is either A or B with the probability distribution

(),1p p− and 1/ 2p > ;

• tC , the tth message (sent by the project leader if T is odd and by the

outside developer if T is even);

• tI , following sets of information:

o AI , the project leader discovered that the state of nature is A

and sent no additional message to the developer,

o 0I , the developer did not receive any message,

o 1I , the project leader discovered that the state of nature is B

and sent 1C to the developer,

o 2I , the developer received 1C , understood that the innovation

had the potential to be a radical one and therefore sent 2C to

express willingness to make a commitment to its development;

 20

o and more generally: 2tI , corresponds to the state of information

of the developer when he sent 2tC , while 2 1tI + is the project

leader’s information set.

Figure 2. Developed form.

The fact that q>0 is not a trivial assumption. The interesting feature

of this assumption and of the model that follows is that even when the

organizational issues seem to be fixed by the technology, or the clustering of

the whole projects in smaller projects (objects) – in other words, when the

uncertainty seems to be resolved – the outcome may still be Pareto ineffective

 21

due to the lack of leadership. For an even greater strength of the model, we

put ourselves in a situation where a radical innovation is more likely than an

incremental one: p>1/2.

Indeed, as soon as the developer receives a message regarding the new

open source project, she knows that the state of nature is B . Thus, except AI

and 0I , the uncertainty is no longer due to the initial event, which is now

known to both players, but rather to the state of information of the other

player. For example, in 2I , the developer replied to the first message with 2C ,

and, as she did not receive any further messages, she does not know if the

project leader is in 1I (the project leader sent the first message 1C but did not

receive C2) or in 3I (the project leader received 2C but did not send anything

after that).

More generally, if the player’s state of information is tI , she does not

know whether the other is informed of 1tI − or 1tI + . However, the probability of

these two events taking place is not equal. In fact, we can show that, if a

player sent a message tC and did not receive a confirmation, there is more

chance that tC was lost rather than 1tC + confirmation did not arrive.

LEMMA 1. If a player sent a message tC and did not receive a response from

the other player, it is more likely that tC was lost rather than that 1tC + did not

arrive.

 22

Proof. We calculate the conditional probabilities of 1tI − and 1tI + knowing tI for

any 1t ≥ :

 () ()()1 1t t
qP I I

q q q− =
+ −

and

 () ()
()()1

1
1t t

q q
P I I

q q q+

−
=

+ −

thus:

 ()
() ()

1

1

1 1
1

t t

t t

P I I
qP I I

−

+

= >
−

.

Knowing tI , a player knows that the other player is more likely to be in 1tI −

than in 1tI + . □

The implication of Lemma 1 is that, when a player does not receive a

message in which the other player confirms his strong commitment, the

former thinks that the latter is in fact more likely to make a weak

commitment rather than a strong one. If the developer did not receive a

message, she thinks that it is more likely that the project leader plays as if

the state of nature was A .

LEMMA 2. The property of conditional optimality of a sequential equilibrium

implies here that, whatever 0q > and whatever the number of exchanged

messages, co-ordination between the project leader and the developer cannot be

applied with certainty.

 23

Proof. As 1/ 2p > , we have:

 () () ()0 1 01A
pP I I P I I

p p q
= >

+ −
.

In other words, if the outside developer did not receive any messages, he or

she thinks that it is more likely that the state of nature is A , rather than

that the first message was lost. □

To obtain perfect co-ordination, the project leader must thus play m if

A . As a consequence, the developer will also make a weak commitment

within the context of an incremental innovation. The following proposition

makes that clear.

PROPOSITION 1: When the state of nature is A, the property of conditional

optimality implies that the developer plays m.

Proof. Let us determine a sequential equilibrium in which the project leader

plays m if A . In this case:

In 0I , the developer minimizes its loss expectation, knowing that it will

obtain:

() () () () ()
() () () () ()

0 2 1 0 2

0 2 1 0 2

min 2

min 2

m m
A

M M
A

E m P I I O A P I I O B

E M P I I O A P I I O B

⎧ = +⎪
⎨

= +⎪⎩
 (4)

As () ()0 1 0AP I I P I I> and () ()2 2
m MO A O A> , the property of conditional

optimality implies that the outside developer plays m . □

 24

Similarly, even if the project has the potential to become a radical

innovation, players will also make a weak commitment, leading to a

suboptimal result.

PROPOSITION 2: When the state of nature is B, the property of conditional

optimality implies that both the project leader and the developer play m, even

though the development of the innovation would require M.

Proof. In 1I , the project leader knows B and knows that the developer plays

m in 0I . Its expectations of conditional losses are then respectively:

() () () () ()
() () () () ()

0 1 1 2 1 1

0 1 1 2 1 1

min 1

min 1

m m

M M

E m P I I O B P I I O B

E m P I I O B P I I O B

⎧ = +⎪
⎨

= +⎪⎩
 (5)

As () ()0 1 2 1P I I P I I> and () ()1 1
m MO B m O B m> , the property of conditional

optimality implies again that the project leader chooses m .

By recurrence, the two players always choose m . □

This equilibrium is the fear of any leader, either in the proprietary

software industry or the open source industry. If one wishes to extend the

range of this conclusion, due to the differences in management in these two

worlds, the open source development may be assumed to be less effective – or

slower – at fixing issues due to asymmetries of information. If this holds true,

and although the state of nature may be a radical innovation, open source

developers in projects with a low commitment could a sub-optimal

equilibrium.

 25

CONCLUSION - DISCUSSION
 The model developed here explores the choices made by leaders and

outside developers in the context of an open source innovation (Blind & Edler,

2003). It shows that, having taken into account the uncertainty created by e-

mail communication among developers, an open source governance structure

creates incentives to under-invest in software that constitutes radical

innovations. This provides an explanation for the puzzle underlined in the

introduction of this paper: the most successful open source softwares tend to

be incremental innovations, even though developers might gain greater

benefits to their reputation by investing in radical ones. Our paper also

explains a related empirical phenomenon, observed in several case studies of

open source projects (von Krogh et al., 2003; Lerner and Tirole, 2002): open

source developers tend to participate in many projects instead of focusing

their efforts on the one they think is the most innovative (Burgelman &

Meza, 2001)..

This paper therefore contributes to the existing literature on the

economics of open source projects and software development, especially

regarding what makes this open source governance structure more or less

efficient depending on the situation. Short-term benefits of developers also

being users (von Hippel & von Krogh, 2003), and delayed benefits in terms of

reputation (Lerner & Tirole, 2002) have been identified by previous literature

as being key criteria explaining how an open source governance structure

 26

works and might be efficient in certain situations. Here we add another key

criterion: the nature of the innovation, either radical or incremental.

Because of the coordination problems highlighted in the model, it is

very difficult for a developer to know for sure that the project leader or other

developers are ready to make a strong commitment to the development of the

innovation. Note that firms generally do not face this kind of signaling

problem. Firms, for example through expansive advertising or celebrity

endorsements, can send a strong and credible signal to consumers, to

suppliers or other corporate allies that they plan to make a strong

commitment. As shown in this paper, this type of signal is much more

difficult to create for open source developers. How an open source governance

structure might, in certain cases, be able to overcome this problem is an

interesting topic for future research.

Following our insights here, one can represent the relative efficiency of

different governance structures by looking at two key dimensions (Table 1).

On a vertical axis, one can consider the number of potential users of the

innovation among the community of developers. This dimension takes into

account the short-term benefits extracted by users of the software, as

identified by von Hippel (2001). The horizontal dimension takes into account

the nature of the innovation, either incremental or radical, as considered in

this paper. As highlighted by the two grey areas in Table 1, our paper,

combined with the existing literature, suggests that the open source model is

 27

probably the most efficient governance structure when there are many

potential users in the community of developers and the innovation is

incremental. On the other hand, a closed source governance structure might

be more efficient if the innovation is radical and there are few potential users

among developers. In this case, the co-ordination problems stressed by our

model should be quite difficult to overcome, making a corporate actor more

likely to develop the innovation.

 Incremental
innovation

Radical
innovation

Many potential users

Open source –

developers

Mixed governance
structure: Closed source

first, then full open
source

Few potential users

Mixed governance

structure: Closed source
and then open source,

but with the firm
staying highly involved

Closed source

– a firm

Table 1: Efficient governance structures for software

innovations

 28

Our discussion here also points out a clear avenue for future research.

In effect, two areas remain to be studied in depth: when the innovation is

radical with many potential users-developers, and when the innovation is

incremental with few potential users among developers. For these cases, we

indicated in Table 1 that mixed governance structures might be efficient

options. By mixed governance structures –also been called hybrid strategies

(West, 2003)– we mean that the innovation would begin as a closed source

initiative and would move later to an open source one. Many companies have

already engaged in these kinds of mixed governance structures, the most

famous ones being Netscape with Mozilla (Hamerly et al., 1999), Hewlett-

Packard with e-speaking software, or even IBM with its WebSphere suite

which includes Apache.

One interesting aspect here is that the involvement of firms in some

sort of open source project can be a double-edged sword. On the one hand, the

firm can help create stronger delayed incentives for developers, in terms of

future career benefits, recognition or press coverage of the innovation. These

might be important supports when the innovation is incremental but there

are few potential users. By removing delayed benefits, more developers might

become interested in a project, even though they are not direct users. In this

case, the firm might keep a degree of control over the development of the

software, for instance by sitting on some sort of open source governing council

which monitors the process.

 29

On the other hand, however, firm involvement may also create some

disincentives for certain developers to participate. Microsoft’s attempts to

participate in open source development, for instance, have not generated

great support from developers (see for instance Tieman, 2001). In cases where

there are many potential users among developers but the innovation is

radical, this is probably a point to consider. A firm can certainly help start

the process, but its continued control, for instance through a governing

council, might create disincentives for developers. Releasing the product

freely and fully into an open source model might be a good option in this case.

These are just speculations based on the model proposed in this paper.

Research in the future should certainly clarify whether these directions truly

matter for the determination of mixed governance structures in software

development.

Our results also speak to the literature on the economics and

management of innovation as a whole. Starting with Schumpeter (1950) and

Arrow (1962), this literature has focused on whether incumbents or new

entrants were more likely to innovate. Further studies have shown that this

depends on the nature of the innovation. In effect, an innovation can be

incremental (or radical) either in the economic sense (which is the one that

has been considered in this paper), or in the organizational sense (Henderson

& Clark, 1990; Henderson, 1993). Compared to proprietary software, open

 30

source projects are clear radical innovations in the organizational sense (von

Krogh et al., 2003). However, we suggested here that they are unlikely to

deliver radical innovations in the economic sense. Regarding the question of

who is more likely to innovate, we might therefore reconsider Henderson &

Clark’s matrix as shown in Table 2. In that context, open source projects

would be more likely to generate innovations that are incremental in the

economic sense, but which are based on a brand new organizational

structure. The open source system certainly has the flexibility to generate

those organizational innovations. On the other hand, proprietary incumbents

would remain more likely to innovate when the innovation is incremental

both in the economic and organizational sense, due to their existing

capabilities and their redeployment. Finally, proprietary new entrants would

be the most likely to propose innovations that are both radical in the

economic and the organizational sense. In this latter case, the coordination

problems highlighted in this paper might make the open source governance

structure less efficient.

 31

 Incremental –
Economic

Radical –
Economic

Incremental –
Organizational

Proprietary incumbents
more likely to innovate

Unclear

Radical –

Organizational

Open source projects
more likely to innovate

Proprietary new
entrants more likely to

innovate

Table 2: Who is most likely to innovate in the software industry?

This analysis has deep implications for competitive dynamics in the

software industry. It suggests that open source projects are in fact more

likely to compete head to head with incumbents rather than with new

entrants, both mainly targeting incremental innovations in the economic

sense. The public policy debate concerning copyrights, in which open source

proponents argue fiercely against software companies, takes on a new

dimension from this angle.

Our analysis also has implications for public policy. Open source

proponents are at the origin of a large controversy, especially in the

European Union, regarding software copyrights. This paper does not take

sides in this debate, but it does add another perspective: that open source

governance structure is not necessarily the best way to develop software - it

depends on the innovation. For radical innovations, there are some incentives

 32

for innovators to go for a more integrated and hierarchical structure, at least

in the beginning. That is not to say that there should be copyrights to protect

software innovations, but rather that it would be inefficient to necessarily

look for a decentralized governance structure.

By the same token, our paper also has implications for antitrust. A lot

has been written on the Microsoft trial, and much of what has been written

suggests that the very existence of Microsoft impeded the natural evolution of

the open source mode of development. Our model suggests that, even in a

world where no outside barriers to the development of the open source mode

exist, there might still be some reasons why, for certain specific innovations,

a more integrated mode might be superior. It might even be that the more

innovative the project, the greater the incentive for the project leader to

choose the closed source model. This would not be related to willingness by

this project leader to benefit from monopoly rents, but would be the most

efficient way to cope with the great uncertainty highlighted in this paper.

 33

REFERENCES
Abernathy, W., Clark, K.B. 1985. Mapping the Winds of Creative Destruction. Research

Policy. 14: 3-22.

Arrow. K. 1962. Economic Welfare and the Allocation of Resources for Invention. In

The Rate and Direction of Inventive Activity. Richard Nelson (Ed.), Princeton, NJ:
Princeton University Press: 609-626.

Behlendorf, B. 1999. Open Source as a Business Strategy. Open Sources: Voices of the

Open Source Revolution. C. Di Bona, S. Ockman and M. Stone. Sebastopol,
O'Reilly and Associates.

Blind, K., Edler, J. 2003. Idiosyncrasies of the Software Development Process and their

Relations to Software Patents: Theoretical Considerations and Empirical
Evidence. Netnomics. 5: 71-96.

Burgelman, R., Meza, P. 2001. The Open Source Software Challenge in 2001. Case,

Stanford University, Graduate School of Business, SM-85.

Dalle, J-M., Julien, N. 2003. 'Libre' Software: Turning Fads into Institutions? Research

Policy. 32: 1-11.

Damanpour, F. 1991. Organizational Innovation: A Meta-Analysis of Effects of

Determinants and Moderators. Academy of Management Journal. 34, 3: 555-590.

Fichman, R.G., Kemerer, C.F. 1997 The Assimilation of Software Process Innovations:

An Organizational Learning Perspective. Management Science. 43, 10: 1345-
1364.

Garzarelli, G. 2004. Open Source Software and the Economics of Organization. In

Markets, Information and Communication. Pierre Garrouste and Jack Birner
(Eds.). New York: Routledge. 47-62.

Hamerly, J., T. Paquin, et al. 1999. Freeing the Source: The Story of Mozilla. Open

Sources: Voices from the Open Source Revolution. C. Di Bona, M. Stone and S.
Ockman. Sebastopol, O'Reilly and Associates.

Henderson, R. 1993. Underinvestment and Incompetence as Responses to Radical

Innovation: Evidence from the Photolithographic Alignment Equipment Industry.
Rand Journal of Economics. 24, 2: 248-270.

Henderson, R., Clark, K.B. 1990. Architectural Innovation: The Reconfiguration of

Existing Product Technologies and the Failure of the Established Firms.
Administrative Science Quarterly. 35, 1: 9-30.

 34

Hertel, G., Niedner, S., Herrman, S. 2003. Motivation of Software Developers in Open

Source Projects: An Internet-Based Survey of Contributors to the Linux Kernel,
Research Policy. 32: 1159-1177.

Johnson, J. 2002. Open Source software: Private Provision of a Public Good. Journal of

Economics and Management Strategy. 11(4): 637-662.

Lakhani, K., von Hippel, E. 2003. How Open Source Software Works: "Free" User-to-

User Assistance. Research Policy. 32: 923-943.

Kollock, P. 1999. The Economies of Online Cooperation: Gifts and Public Goods in

Cyberspace. Communities in Cyberspace. Smith and P. Kollock. London,
Routledge.

Krishnamurthy, S. 2003. Business Horizons. September: 47-56.

Lerner, J., Tirole, J. 2002. Some Simple Economics of Open Source. Journal of

Industrial Economics L(2): 197-234.

Lerner, J., Tirole, J. 2001. The Open source Movement: Key Research Questions.

European Economic Review. 45: 819-826.

McCormack, A., Verganti, R., Iansiti. 2001. Developing Products on "Internet Time":

The Anatomy of Flexible Development Process. Management Science. 47,1: 133-
150.

Mokus, A., Fielding, R., Herbsleb, J. 2002. Two Cases Studies of Open Source Software

Development: Apache and Mozilla. ACM Transactions on Software Engineering
and Methodology. 11, 3: 1-38.

Oram, A. 2000. Gnutella and Freenet Represent True Technological Innovation.

http://www.openp2p.com/pub/a/20805/12/2000.

Raymond, E. 1999. The Cathedral and the Bazaar.
http:/www.tuxedo.org/esr/writings/cathedral-bazaar/.

Rubinstein, A. 1989. The Electronic Mail Game: Strategic Behavior Under "Almost

Common Knowledge". American Economic Review 79(3): 385-391.

Schumpeter, J. 1950. Capitalism, Socialism and Democracy. New York: Harper.

Stallman, R. (1999). The GNU Operating System and the Free Software Movement. In

Open Sources: Voices of Open Source Revolution. C. Di Bona, S. Ockman and M.
Stone. Sebastopol, O'Reilly and Associates.

 35

Tiemann, M. 2001. Decoding Microsoft's Open Source Argument.
http://zdnet.com.com/2100-1107-529784.html

von Hippel, E. 1995. The Sources of Innovation. New York: Oxford University Press.

von Hippel, E. 2001. Open Source Shows me the Way: Innovation by and for Users - No

Manufacturer Required! Sloan Management Review. 42, 4: 82-86.

von Hippel, E., von Krogh, G. 2003. Open Source Software and the Private-Collective

Innovation Model: Issues for Organization Science. Organization Science. 14, 2:
209-233.

von Krogh, G., Spaeth, S., Lakhani, K.R. 2003. Community, Joining, and Specialization

in Open Source Software Innovation: A Case Study. Research Policy. 32: 1217-
1241.

West, J. 2003. How Open is Open Enough? Melding Proprietary and Open Source

Platform Strategies. Research Policy. 32: 1259-1285.

Williamson, O. 1985. The Economic Institutions of Capitalism. New York: Free Press.

