FOCUS ON . . . ORAL AND MAXILLOFACIAL SURGERY

Foreword

The rise in the incidence of battlefield head, face and neck injuries from the 20th century [1] to the 21st century [2] is well documented. It is generally agreed that this increased incidence reflects improved thoraco-abdominal protection from modern body armour systems in combination with the increased use of improvised explosive devices [3]. This has inevitably resulted in an increased operative burden for those surgeons deploying to manage head, face and neck injuries in the field as well as for the departments of head and neck surgery to which our injured servicemen are evacuated. Military maxillofacial surgeons regularly manage injuries on deployment that can be outside their routine civilian based practice, requiring a commitment towards tailored surgical teaching early in our training. It has been a privilege to edit this Focus on . . . Oral and Maxillofacial Surgery consisting of six linked papers which presents the reader with an excellent overview of the current trends in this evolving military surgical specialty. Each article is authored by one or more maxillofacial surgeons who have recently deployed to Iraq or Afghanistan. By incorporating authors from America and Canada as well as United Kingdom it reflects current medical opinion on military oral and maxillofacial surgery for our coalition medical services. This series of articles complement those published recently in the Journal on military ocular trauma [4] and head, face and neck injuries [5].

J Breeze
Assistant Editor – J R Army Med Corps & Trainee in Oral and Maxillofacial Surgery

References

Management of Devastating Ocular Trauma – experience of Maxillofacial Surgeons deployed to a Forward Field Hospital

Ansell MJ†, Breeze J*, McAlisterv VC, Williams MD4

†Trainee in Maxillofacial Surgery, Queen Alexandra Hospital, Portsmouth; *Head and Neck Research Fellow, Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine; †Canadian Forces Medical Service and Professor, University of Western Ontario, Canada; ‡Consultant Maxillofacial Surgeon, Eastbourne District General Hospital, East Sussex, Deployed Consultant Role 3 Hospital Kandahar

Abstract

Combat-related eye injuries continue to increase in frequency and are generally secondary to Improvised Explosive Devices. Many ocular injuries are potentially preventable by the wearing of ballistic eye protection. The management of penetrating eye trauma is normally outside the routine practice of maxillofacial surgeons in the UK. The aim of this paper is to describe the surgical techniques used in the modern management of devastating ocular trauma including selected case examples managed by British military maxillofacial surgeons deployed to Afghanistan.

Introduction

The incidence of military head, face and neck injuries has increased in modern conflict in comparison to that seen in the last century. Owens et al [1] reported that 29% of all battle wounds during Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) involved the head and neck compared with 16% during the Vietnamese War. Additionally, 39% of battle-injured patients in the Navy-Marine Corps Combat Trauma Registry from OIF sustained trauma to the head, face, and neck [2].

An increasing trend in the incidence of ocular combat injuries has also been well documented. The reported incidence in the 19th century was 1% [3], which rose to 2-2.5% during World Wars I and II [3]. Incidences of ocular injury in the 21st century by US forces reveal an incidence between 6% [1, 2] and 10% [4]. Mader et al [4] found that blast fragmentation from munitions caused 82% of all injuries in US servicemen deployed on OIF; the most common single cause of which was the improvised explosive device (IED) causing 51% of all injuries.

The ocular surface area represents only 0.27% of the body surface area. However the eye casualty rate in combat is 20 - 50 times greater than expected based on the body surface area [3]. Thoraco-abdominal protection provided by modern body armour has played its part in increasing the survivability of many previously fatal injuries, shifting the area of wounding to the exposed extremities, including the face and eyes. IED's produce multiple high-energy projectiles that impact over a large body surface area but are potentially stopped by simple eye protection. The benefit of eye protection is demonstrated in Figures 1 and 2. Both coalition
Ocular trauma on deployment

servicemen were injured on a foot patrol by an IED; the first case was wearing ballistic eye protection and received no significant injury to his eyes, whereas the second had momentarily removed his eye protection, and received shrapnel spray to his face with complete rupture of his left eye and scleral perforation of his right eye. Data comparing the incidence of eye injuries in coalition forces wearing different types of eye protection or between those wearing no ocular protection has not been published.

Management of ocular trauma in those patients evacuated to a Role 4 setting for definitive care

Treatment prior to evacuation was limited to control of haemorrhage, removal of foreign bodies from the eye surface (but not impaled foreign bodies), repair of the globe, debridement of surrounding devitalised tissue and placement of a protective dressing with eye shield. Prophylactic systemic and topical antibiotics as well as tetanus toxoid were all given prior to evacuation.

Management of ocular trauma in those patients treated definitively at Kandahar

Definitive surgery was undertaken in Kandahar to minimise the risks of infection and sympathetic ophthalmia due to the limited healthcare facilities available in Afghanistan. Consideration was also given to adequate cosmesis as well as making the remaining eye safe. If the eye was deemed salvageable then the patient was referred to the Non Governmental Organisation (NGO) Eye Surgeon in Kabul.

The majority of open globes can be repaired without primary enucleation [5]. If the eye was deemed non-salvageable three options were possible (Figure 3). During the 21 month deployment, the hospital in Kandahar performed 19 enucleations and 3 eviscerations.

Enucleation involves removing both the globe and a segment of the anterior optic nerve, with preservation of all other orbital structures, especially the conjunctiva [6]. Evisceration is the removal of the contents of the globe while leaving the sclera and extra-ocular muscles intact. The evisceration process removes the ocular contents but preserves the sclera and, in some cases, the cornea. Ideally surgeons should attempt to avoid enucleation as a primary procedure unless the patient has been properly counselled and consented [7]. It is better to perform a primary repair, allowing the eye to be eviscerated or enucleated later; however in mass-casualty situations this may be difficult to achieve.

The goals of evisceration and enucleation are the same (Box 1). Although no firm consensus exists on the indications for evisceration, most experts agree that a patient with a blind, painful eye without risk of intraocular malignancy is a good candidate for the technique [6]. Additionally, eyes lost to endophthalmitis may be best treated with evisceration. The advantages and disadvantages of enucleation with immediate prosthesis, enucleation with delayed insertion of prosthesis

![Figure 1: Coalition serviceman hit by an IED on foot patrol wearing issued eye protection](image1)

![Figure 2: Coalition servicemen in same patrol not wearing eye protection](image2)

![Figure 3: Treatment options for management of ocular trauma in the local population](image3)

Box 1: Surgical goals of enucleation and evisceration

- To achieve a centrally placed inert implant with adequate anterior coverage
- To achieve appropriate volume replacement in the orbit
- To maintain deep fornices and eyelid support for the placement of a prosthesis
- To provide symmetry with the contralateral orbit
- To allow for maximum socket motility, with translation of forces to the prosthesis
Clinical Cases

Case 1

A coalition serviceman (Figure 2) had momentarily removed his eye protection before being injured by a roadside IED. He received shrapnel spray to his face with complete rupture of his left eye and a scleral perforation of his right eye. Management was repair of the right eye scleral penetration with prolene sutures and rapid evacuation for definitive treatment with a US ophthalmic surgeon. Although the left eye was obviously not salvageable, the decision was made not to enucleate or eviscerate it at the time of surgery to the right eye as it was felt that such casualties should be given time to accept the diagnosis allowing appropriate consent.

Case 2

A local boy injured by shrapnel with a ruptured globe (Figure 4) was treated by removal of the ballistic fragment and as the scleral sac was salvageable, was repaired by primary closure. The scleral contents were enucleated with curettage and the scleral sack was washed out with hydrogen peroxide. Medpor coral implants were inserted, having been previously soaked in bacitracin and the scleral sack closed primarily over the defect (Figure 5).

Case 3

An Afghan Army soldier, hit by shrapnel from an IED received extensive globe injuries that were obviously impossible to salvage. The eye was enucleated, leaving the extra ocular muscles with optic nerve divided and tied off (Figure 6). The intra-conal space was washed with Betadine, hydrogen peroxide and saline and packed with iodoform ribbon gauze. Finally the eye lids were repaired and the fornices preserved with a Morgan eye lens.

The patient returned to theatre one week later where the pack was removed. Coral implants were inserted with the extra ocular muscles closed over the implant and the conjunctiva closed over muscles (Figure 7).

Table 1: Advantages and disadvantages of three principal techniques for managing the devastated globe.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enucleation and immediate repair with prosthesis</td>
<td>- Single stage procedure</td>
<td>- Risk of infection from contaminated orbital content</td>
</tr>
<tr>
<td></td>
<td>- Ensures orbital content is safe</td>
<td>- Difficulty closing extra ocular muscles over implant</td>
</tr>
<tr>
<td>Delayed staged repair</td>
<td>- To reduce risk of implant extrusion</td>
<td>- A two stage procedure with possibility of casualty not returning to unit</td>
</tr>
<tr>
<td></td>
<td>- To reduce risk of infection</td>
<td>- Protracted timeline requiring extended theatre and ward bed times</td>
</tr>
<tr>
<td></td>
<td>- Better cosmesis with a mobile globe</td>
<td></td>
</tr>
<tr>
<td>Evisceration</td>
<td>- To reduce risk of implant extrusion</td>
<td>- Technically difficult</td>
</tr>
<tr>
<td></td>
<td>- To reduce risk of infection</td>
<td>- Risk of sympathetic ophthalmia</td>
</tr>
</tbody>
</table>

Figure 4: Presentation of intra-ocular fragment injury in local boy

Figure 5: Same patient as Figure 4 after enucleation of scleral contents and insertion of Medpor coral implants

Figure 6: Appearances of the orbit after enucleation following IED ocular injury

Figure 7: Same patient as Figure 6 with coal implants in situ
Discussion
Perforated globe injuries sustained in combat generally result in poor visual and anatomical outcomes despite surgical intervention [8]. There is little evidence to favour one or other of the techniques of enucleation and evisceration. Enucleations are generally carried out more commonly than eviscerations in both military and civilian practice; however a recent survey of 297 UK consultant ophthalmologists [9] found two-thirds preferred evisceration over enucleation but reasons for this were not given. On the question of choice of implant, 12% preferred natural coral implants, which is the material available, and used, in theatre by deployed British maxillofacial surgeons. Savar et al [5] reviewed 660 open globe injuries over a 5-year period admitted to a civilian trauma centre in the US; 51 underwent enucleation and only 4 had eviscerations, which are similar proportions to ocular surgery performed by the Oral and Maxillofacial surgeons deployed to Kandahar in this 21-month period.

The most serious complication of both enucleation and evisceration is the risk of developing sympathetic ophthalmia. This is a rare bilateral pan-uveitis in which there is a painful red eye, visual loss and a history of an open globe injury. The risk of sympathetic ophthalmia has been quoted as 0.14% in a large scale civilian study of penetrating eye injuries in South Africa [10], and in less than 1/500 cases of open globe injury [11]. Colyer et al [8] reported no episodes of sympathetic ophthalmia in 25 enucleations on US servicemen evacuated from Iraq to the Walter Reed hospital between 2003-2006. Freidlin et al [12] in 2006 published a case report about a 21-year-old US soldier who received a penetrating eye injury while fighting in Iraq and was treated with evisceration. Sympathetic ophthalmia developed, which responded well to steroid treatment. They stated that it was the first case of sympathetic ophthalmia after a war injury reported since World War II. In the time period covered in this article neither evisceration nor enucleation resulted in post-operative complications and suggests that both techniques are safe but we feel that evisceration provides better cosmesis than enucleation. The management of devastating ocular trauma is addressed in the head and neck component of the Military Operational Surgical Training (MOST) course. This new course, delivered entirely by consultant surgeons is designed to teach all newly deploying surgeons the theoretical and practical concepts behind the surgical techniques currently required on deployment. Both enucleation and evisceration are taught by consultant ophthalmic surgeons based on cadaveric dissection. These techniques may be outside of the routine civilian practice of that surgeon, as is the management of devastating ocular trauma by both maxillofacial surgeons and trauma surgeons.

The increased use of ballistic eye protection remains the greatest way of reducing preventable penetrating eye injuries but its uptake amongst servicemen remains variable. Cotter and La Plana modelled data from the Vietnam War and proposed that standard US Army 2 mm thick defence google would have been prevented 52% of eye injuries [13]. Mader et al [4] analysed 207 eye injuries sustained by US servicemen and commented that polycarbonate ballistic eyewear could have prevented many, but not all, of the injuries. Colyer et al [8] found that during 2003 - 2006, of 61 US servicemen evacuated to the US with perforating eye injuries, only 43% were wearing eye protection. Servicemen complain that eye protection degrades their vision due to misting, there is a restricted field of view from the frames and that the lenses scratch easily [7]. Further work needs to be undertaken to increase compliance in the wearing of eye protection. Enforced use of eye protection in US military convoys in Iraq in 2004 reduced the incidence of eye injuries to 0.5% from a conflict wide incidence of 6% [14], making a strong case for the mandatory use of military eye protection by all deployed UK servicemen.

Conclusion
The management of penetrating eye trauma is normally outside the routine practice of maxillofacial surgeons in the UK. However improved pre-deployment training and the combined experience of a military maxillofacial cadre that has undertaken two long-term deployments has resulted in a large number of surgical interventions for devastating ocular trauma without complications on long-term follow up. Although there is little in the literature to suggest enucleation is more effective than evisceration, the former is undertaken more commonly in both military and civilian environments and was reflected in the proportions performed in our deployment. Many ocular wounds are still potentially preventable and greater emphasis must be placed on exploring reasons why deployed UK servicemen do not always wear ballistic eye protection.

Acknowledgements
The case examples discussed in this article were treated by one author (MDW) but the authors would like to acknowledge Wing Cdr AJ Gibbons, Lt Col N MacKenzie, Col D Bryant and Gp Capt A Monaghan who were the other military maxillofacial consultants who deployed during this 21-month period and whose figures were included in the overall statistics.

References
6. Ophthalmic Care of the Combat Casualty. M.D. Allen B. Thach (Editor), Walter Reed Army Medical Center Borden Institute.