Western University

From the SelectedWorks of Dr. Vivian McAlister O.C.

June, 2008

Waiting for liver transplantation in Canada:
waitlist history 2000--2004 and sensitivity

analysis for the future.
David Stanford, University of Western Ontario

Elizabeth Renouf, University of Western Ontario
Vivian C. McAlister, University of Western Ontario

_ “"'" Available at: https://works.bepress.com/vivianmcalister/121/
Western X
D40
-

UNIVERSITY - CANADA



www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://www.uwo.ca/
https://works.bepress.com/vivianmcalister/
https://works.bepress.com/vivianmcalister/121/

Health Care Manage Sci (2008) 11:184-195
DOI 10.1007/s10729-008-9062-y

Waiting for liver transplantation in Canada: waitlist history
2000-2004 and sensitivity analysis for the future

David A. Stanford - Elizabeth M. Renouf -
Vivian C. McAlister

Received: 15 February 2008 / Accepted: 15 February 2008 / Published online: 26 March 2008

© Springer Science + Business Media, LLC 2008

Abstract This study comprises a historical review of liver
transplants performed in Canada during 2000-2004, and
sensitivity analyses to assess the impact of possible changes
in the operation of the waitlists. In the first part, overall
statistics are reported, and the notable impact that blood
type plays in affecting waiting time is discussed. Waiting
times and numbers of transplants are also reported by
gender, age, and geographic region (waitlist), and statistical
analyses of the patient placement and cadaveric donations
processes are performed. These analyses establish that the
service times of an appropriate queuing model are closely
approximated by an exponential distribution. Consequently,
the resulting distribution for the waiting time from
placement until transplant is well described by a different
exponential distribution. The GI/M/1 queuing model is then
used to perform a number of sensitivity analyses. The
sensitivity analyses attempt to quantify the impact of no
change in policy via a lottery system, and likely increases in
cadaveric and/or living donor sources that would be needed
to bring stability to the system. The results can be used by
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relevant authorities, together with information on success
rates for publicity campaigns and living donor matching
campaigns, to assess where further efforts should be made
to reduce waiting times.

Keywords Waitlist - Liver transplantation - GI/M/1 queue -
Sensitivity analysis - Statistical analysis - Historical analysis -
Living donor - Deceased donor - Waiting time

1 Introduction

Liver transplantation is the primary therapy for patients
with chronic end stage liver disease. Unfortunately, there
is a shortage of deceased donor organs, which means that
there is often a significant waiting period for patients
requiring transplantation. Similar to other transplantable
organs and/or other jurisdictions (a selection of such
references is [4, 5, 9, 10]), our study of liver transplanta-
tion in Canada 2000-2004 has revealed an increasing
demand for livers as the median population increases.
Meanwhile, the availability of cadaveric organs has
remained essentially constant. This continues a previously
reported trend. [1]

This study comprises two parts: a historical review of
liver transplants performed in Canada during 2000-2004,
followed by sensitivity analyses to assess the impact of
possible changes under two scenarios. In the former part,
overall statistics are reported, and the notable impact that
blood type plays in affecting patient waiting time are
discussed. Waiting times and numbers of transplants are
also reported by gender, age, and geographic region
(waitlist). Following this, statistical analyses of the patient
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placement rate, the rate of cadaveric donations, and the
number of living-related donations are presented.

The latter part of this study attempts to quantify the
impact of no change in policy via a lottery system. It also
suggests likely increases in cadaveric and/or living donor
sources needed to bring stability to the system. The paper
ends with a discussion of the results.

2 Background

Organ transplant allocation systems have evolved since the
1960s, and are usually based on time waiting with a
modification for medical urgency. In Canada, there are six
regional centres that perform liver transplants, each with its
own waitlist (or “queue”). These six queues generally
operate independently, allocating donated organs from
within their specific geographical range to patients on its
own waitlist. Patients on the waitlist are classified by blood
type and priority status group. Status is based on a patient’s
hospitalisation situation; if it changes, their priority is
updated immediately. Statuses are assigned as follows
(from highest priority to lowest):

4F acute liver failure, intubated in ICU
4 intubated in ICU

3F acute liver failure in ICU

3 in ICU

2 in hospital (not ICU)

1T at home with tumour

1 at home

For our data analysis, we have aggregated the groups as
urgent (3F, 4 and 4F) and non-urgent (1, 1T, 2, and 3).
Within status groups, organs are allocated based on waiting
time, with whoever has been waiting the longest receiving
the next appropriate organ.

The exception to the independent operation of the
queues occurs when there is an urgent patient. If a regional
queue with no urgent patients obtains a liver from a
deceased donor, the liver is “shared” to a nearby region
with an urgent patient. If there is more than one urgent
patient, the liver is allocated to the patient who has been
waiting the longest.

Approximately 90% of liver transplants in Canada are
allocated on the basis of waiting time alone. [2] There are
concerns that patients who might have benefited from liver
transplantation have died before allocation, while others
received a transplant but did not benefit by transplantation
at that particular time. In the USA this concern caused a
change in policy, so that time waiting no longer determines
organ allocation priority which is now dependent on a liver
disease severity score (known as MELD or model of end-
stage liver disease). [3] The presence of a different system

of organ allocation has stimulated interest in analysis using
models and simulations. [4] We are unaware of any
description or analysis of organ allocation models for liver
transplantation in Canada.

3 Methodology and adjustments

The data was obtained from the Canadian Organ Replace-
ment Registry (CORR), a division within the Canadian
Institute for Health Information (CIHI). Data was also
obtained from the national waitlist housed at the London
Health Sciences Centre (LHSC). The data collected
consisted of all waitlist activity for liver transplants in
Canada from January 1, 2000 to December 31, 2004.
Follow up data was obtained until December 31, 2005.
Information about activity on the waitlist was available
from the LHSC data, while information about transplants
was obtained from the CORR data.

The most common challenge faced was missing data. In
most cases we were able to match the record based on
transplant date with the LHSC data, and fill in the missing
field, e.g. date of listing, or diagnosis for liver failure. In the
data set from CORR, records for patients with multiple
transplants during the time period under study had some
errors where the listing date occurred after the transplant
date. These were corrected wherever possible by comparing
to the LHSC data. Any records that could not be corrected
or where the listing date was missing were removed from
the analysis.

For a period during this study, transplant services for
patients from Atlantic Canada were provided by the
London Health Sciences Centre. Both the recipients and
the donor organ were flown to London, Ontario from
Atlantic Canada for transplantation.

Arrivals to the queue occur when a patient is added to
the waitlist. Service is considered to be complete when a
patient receives a transplant from a deceased donor.
Departures from the queue occur upon transplantation or
removal from the queue. For our project we have treated
transplant by living donation as a removal from the queue
before service (abandonment). Living donations are
matched to specific patients, and do not increase the rate
of availability for others. Reasons for abandonment also
include death while waiting, becoming too sick to undergo
transplant, becoming too healthy to benefit from transplant,
and other causes. Data from each of these sources were
reviewed, compared and reconciled. A description of
waitlist activity was generated and analysed according to
certain factors. Waitlist activity during this period was also
analysed according to the principles of Queuing Theory to
determine its amenability to subsequent modelling.
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4 Results of the wait list study
4.1 Overall descriptive statistics

Data analysis was performed using R software for statistical
computing (Table 1). The total number of records for
cadaveric liver transplants during the period of study was
1,812. The following graphs and table describe general
characteristics of the data for all of Canada.

4.2 Impact of blood type on waiting time

Blood type has a significant impact on the delay prior to
transplant (see Table 2). Since blood type O is the universal
donor type, an O type liver can be transplanted into patients
of any blood types. Similarly, since blood type AB is the
universal recipient blood type, an AB patient can receive
the liver of any donor type. Each of blood types A and B
can receive an O organ, and donate to an AB patient.
Typically, attempts are made to match donor and recipient
blood type, except in urgent cases.

The donor and recipient blood types in Fig. 1 below are
consistent with this reality. There are more O type donors
than recipients, while there are more A and AB recipients
than donors. The number of type B recipients is essentially
the same as the number of donors, suggesting that the
number of B livers allocated to AB patients is offset,
essentially, by O livers allocated to B patients.

Overall, the Canadian population comprises 46% blood
type O, 42% type A, 9% type B, and 3% type AB [8].
Figure 1 reveals that the proportion of donors by blood type
is roughly in keeping with the distribution of blood type in
the population at large. The figure also reveals that the
distribution of recipients by blood types is different: most
notably, there are more type A recipients than type O
recipients, and in fact more A, B, and AB recipients than
donors (although the numbers of type B donors and
recipients is quite close). Hence there is a migration of
blood type O livers to other blood types, and a notable net
positive difference between the number of type O livers
received by type A patients, and the number of type A
livers received by type AB patients. Finally, we note that
the number of type AB recipients is significantly larger than
the number of type AB donors, and that in percentage

Table 1 Overall statistics

Variable Mean Standard Deviation
Recipient age (year) 47.8 16.0
Donor age (year) 42.0 18.3
Waiting time (day) 231.8 296.9

@ Springer

terms, the ratio of received livers to donated livers of the
same blood type is greatest for blood type AB. Based on
these facts, one might expect that blood type A and
especially type AB recipients would see reduced delays
due to their increased share of received livers, that type B
recipients would see delays worse than type A and type AB
but better than type O, and that type O recipients would see
the worst delays as they require a type O organ.

These expectations are borne out in the results of
Table 2 below, which quantifies the waiting time prior to
transplant by blood type. While the overall average
waiting time is slightly less than 8 months, it is an average
of 10 months for type O recipients, who can access 46%
of organs (ignoring Rhesus factor). This figure drops to
just over 7 months for type B patients who have access to
55% of organs, and 6 months for type A, who have access
to 88%. Type AB transplant recipients who have access to
100% waited an average delay prior to transplant of just
3 months.

The field in Tables 2 and 3 denoted “n” includes patients
who were on the list prior to January 1, 2000 and not yet
transplanted as of that date, plus those added to the waitlist
during the period of study. This includes patients added to
the list and then subsequently removed before transplant for
any reason (death, recovery, etc) and patients who received
a living donation. The first two columns (‘#’ and ‘Deaths
on the waitlist’) are taken from the LHSC data set because
CORR does not collect information on patients prior to
transplantation. The data in the third through seventh
columns are from the CORR data.

4.3 Characteristics of transplants by gender, age,
and waitlist

The figures and the tables display summary statistics
calculated by group. Figure 2 below reveals a net transfer
of about 150 livers from female donors to male recipients.
Figure 3 seems to suggest that patient health remains
relatively stable between listing and transplant; but this
ignores deaths prior to transplant, and patients removed
from the queue.

5 Three approaches to address system instability

In order to achieve timely transplants for all patients
deemed to be able to benefit from them, the long-run rate
at which livers become available for transplant must, to
start with, exceed the patient placement rate. This in itself is
not sufficient to ensure timely treatment for all patients, due
to randomness inherent in waitlists: substantial variation
exists not only in the times between patient placements, but
also in organ availability.
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Table 2 Transplant results by blood type

Blood n=# on the List Number of Number of Average Average Age Average Age  Number of Deaths

Type During the Study Deaths on the Cadaveric Waiting Time  of Recipient of Donor First Year Post
period Wait List Transplants (days) (years) (years) Transplant

(0} 1,500 255 (17.0%) 708 309.4 47.6 43.6 97 (13.7%)

A 1,253 137 (10.9%) 779 184.6 47.5 40.6 105 (13.5%)

B 426 64 (15.0%) 215 219 50.2 43 33 (15.3%)

AB 139 17 (12.2%) 108 87.5 47.2 38.4 15 (13.9%)

As the following tables establish, however, none of the
six regional waitlists even meet the necessary first step: the
patient placement rates exceed the rates at which organs
become available in all parts of the country. It is intuitively
clear as well that in a stable environment, as the capacity of
the system in terms of available organs grows well beyond
the demand in terms of placement rate, the delays would be
expected to decrease accordingly.

In order to address the inherent system instability due to
the fact that demand continued to outstrip supply through-
out the study period, and this tendency had in fact worsened
over this period of time, we formulated three strategies to
bring about stability. The first assumes that one must curtail
the demand to less than existing system capacity, while the
latter two look at ways to increase supply to meet existing
demand:

A) Lottery system:

It is required ethically and legally of an allocation system
for a scarce life saving resource to be transparent and fair. It
has been suggested that allocation of scarce resources by
lottery is the only way to avoid bias. [7] This approach has
not been applied because its arbitrary nature implies that
other systems can do better. Current allocation systems are
based on time waiting, modified for medical urgency.
Sensitivity analysis using random allocation of organs is
useful to provide a control against which other systems may
be measured.

Recipient Blood Types Donor Blood Types

Number of Patients
200 400 600 800
Number of Patients
200 400 600 800

A AB B O A AB B O
Blood types of donors and recipients

|

Fig. 1

B) Increased living donations:

The liver is the one organ capable of regenerating itself,
when a portion is removed. Consequently it is possible to
perform transplants of a section of an adult liver, typically
to a compatible relative. As so-called “living-donor” trans-
plants become more and more common, they represent one
source of hope for reconciling a growing patient placement
rate with a stable rate of cadaveric donations.

On April 10th 2007, the Ontario provincial government
indicated it is taking a “good look” at a policy already
implemented in British Columbia, where living donors are
reimbursed for lost wages and travel expenses during the
period of assessment, surgery, and recovery. The B.C.
program offers up to $5,500 in compensation per donor.
Therefore, we considered it timely to assess the number of
living donors that would be required to bring stability to the
transplant systems in Ontario as well as nationally.

C) Increased cadaveric organ availability:

The other option to an increase in the living-related rate
would be an increase in the cadaveric donor rate, and of
course the two options can be pursued in tandem. The
primary means of increasing the cadaveric donor rate is by
a campaign to increase the degree to which donors sign
cards. In Ontario, a private member’s bill sponsored by
MLA Frank Klees in 2007 proposed that all residents of
Ontario would be reminded about the matter of organ
donation whenever their provincial health cards come up
for renewal.

It seems that there have not been many studies as to the
degree to which donor cards have been signed among the
adult population, and we are unaware of any. Similarly,
regional variations in willingness to sign a donor card do
not appear to have been studied. In the course of our
research, values ranging from 20% signing rate to 60%
have been suggested. One study suggests an upper bound
of 95% might be the limit of an achievable signing rate.

6 Modelling the waiting times

The two alternatives available to assess the efficacy of these
three methods to rectify system instability are 1) a detailed

@ Springer
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Table 3 Transplant results by various other factors

n=+# on the List Number of Number of Average Average Age Average Number of Deaths
During the Study  Deaths on the Cadaveric Waiting Time of Pecipient Age First Year Post
Period Wait List Transplants (days) (years) of Donor Transplant
(years)
Age
Adult 3,062 456 (14.9%) 1,671 (54.6%) 237.2 51.3 434 230 (13.8%)
Child 228 15 (6.6%) 141(61.8%) 167.3 6 249 20 (14.2%)
<18
Gender
M 1,897 259 (13.7%) 1,163 (61.3%) 232.5 48.8 432 149 (12.8%)
F 1,086 173 (15.9%) 649 (59.8%) 230.5 46.1 39.7 101 (15.6%)
Province of Wait List
BC 282 51 (18.1%) 168 (59.6%) 162.6 49.7 38.5 24 (14.3%)
AB 508 49 (9.6%) 298 (58.7%) 172.8 46.6 37.8 39 (13.1%)
ON 1,609 275 (17.1%) 703 (43.7%) 340.2 46.3 42.6 60 (8.5%)
QC 737 77 (10.4%) 529 (71.8%) 151.1 50 45.1 110 (20.8%)
NS 177 21 (11.9%) 114 (64.4%) 1933 47.6 39 17 (14.9%)

simulation reflecting all or the most relevant influencing
factors, and 2) a relevant theoretical model that reflects the
key aspects of the system. While the former alternative is
something we are pursuing currently, this is a time-
consuming process; meanwhile, a great deal of relevant
information can be gleaned by modelling the waitlist as a
queue, which requires much less effort.

Queues have been used extensively in models of health
care systems. In this journal, the literature review in a
recent paper [12] includes an excellent discussion and a list
of more than two dozen papers where mathematical models
have been used to address issues related to health care
resources. In particular, Cipriano et al. [12] states that
“Queuing theory has been applied to many aspects of heath
care including emergency rooms [72, 73], cardiac catheter-
ization [74], drug treatment [75], organ transplantation [76—
79], and total joint replacement [35].”

It has been suggested that the proper application of a
pertinent mathematical model is like a good caricature [13].
In the latter case, the image that results from the use of a
small number of well-drawn pen strokes manages to convey

Recipient Gender Donor Gender

1000

Number of Patients
600
I
Number of Patients
600 1000
|

0 200
|

0 200
1

F M F M
Fig. 2 Donor and recipient gender
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the identity of the intended individual. In the former case,
selection of a pertinent model based on most of the most
important factors at play, when evaluated based on good
data estimates, manages to provide useful insight about the
real phenomenon.

The key questions that decision makers of waitlists need
to address are the following: How many patients roughly
can a waitlist handle, and is their time until transplant likely
to be on the order of weeks or months? What are reasonable
estimates of the proportion of patients who will wait in
excess of a specified time interval? Queuing models that
assess system performance under the three suggested
approaches can provide appropriate answers to these order
of magnitude questions, especially as we will establish the
appropriateness of the exponential service mechanism in
the next section.

In order for the queuing model to be relevant, the list of
important factors to be considered includes the number of
servers available, the customer arrival process and the
service time distribution, the service discipline, and whether
the overall arrival and service rates are changing or
relatively static. The present work proposes a GI/M/1-type
queue model (a first-come, first-served single server queue
with exponential service); areas where the model diverges
from reality will be discussed shortly.

Queues are used to model congestion due to random
demand for a limited resource. The limiting factor in a
transplant setting is practically never the availability of the
surgeon or operating theatre; rather, it is the availability of
the organ. Consequently, the arrivals to the queue comprise
the patients being placed on the waitlist, whereas the
service time represents the interval between successive
livers becoming available. The best-known model of the
single server queue presumes that customers arrive accord-
ing to a Poisson process and that service times are
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Fig. 3 Recipient status at time Recipient Status at Listing Recipient Status at Transplant
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exponential. Of the two, the more important assumption is
the exponential service assumption, as we will see two
sections hence. The goal of the next section is to assess the
conformity of the data to these distributional assumptions.
Following statistical analysis of the data at hand, we
initially focus on the key role exponential service plays in
this regard, following which other issues such as server
discipline are discussed.

7 Statistical analysis of patient placement and organ
availability

7.1 Description of the queue properties

The stability of the waitlists is indicated by the ratio p (rho)
of the net arrival rate A (lambda) to the service rate p (mu).
Here, the “arrival rate” equals the patient placement rate
minus the rate of living-related donations. Formally, by
“stability,” we mean the ability of the waitlist to catch up
eventually to any random burst of arrivals. The condition
for stability is p=Mp<1; failing this, the waitlist is bound
to grow over time, unless patients die off or abandon for
other reasons. In fact, one expects the length to grow by
(A—p)t patients after t time units. We discount by the
living-related transplant rate, as the recipients of living
donations are removed from the waitlist once a match is
found. In contrast, the availability of a deceased-donor
organ remains a random event. Therefore, the “service rate”
is the rate at which cadaveric livers become available. The
numbers in this table should be considered as approximate
because of data quality issues. During the 5 year study
period, from January 1, 2000 to December 31, 2004, there
were 3,320 patients already on or added to the waitlist for
liver transplant. According to the CORR data (records with
missing transplant dates or list dates removed), there were
2,011 liver transplants performed between Jan. 1, 2000 and
Dec. 31, 2004. Of these, 1,812 were cadaveric organs and
199 were living related donors. Of the 3,320 patients on or

1 0 1
0=Non-Urgent; 1=Urgent

added to the list during this time period, 471 died before
receiving a transplant. Four hundred and thirty-four patients
were removed for miscellaneous reasons.

As measured by p, Table 4 indicates that none of the
waitlists is stable in the sense of a queue. Deaths and
abandonment can make a system appear stable, but these
are not desirable ways to achieve stability. In fact, the
queues we have observed have grown over time, which is
consistent with the unstable scenario reported by Howard
[4]. The national ratio during the 5-year study period is
1.55, indicating a net patient placement 55% higher than
the rate at which cadaveric organs become available.
Broken down by region, p varies from 1.29 in Quebec to
a high of 1.78 in Ontario. The variation in organ availability
rate reflects a host of causes, most notably differences in
population, but also including, possibly, differences in
accident rates and differing degrees to which donor cards
are signed.

7.2 Distribution of arrivals to the queue

As noted in the last section, the classical models of queues
assume that customers arrive according to a Poisson
process, and that service times are exponential. The
assumed distributions are frequently different from those
observed in the area of application. It is generally assumed
that the greater the degree of deviation from reality, the less
reliable the inference from the queuing model. Hence it is
quite relevant for us to address here the nature of the arrival
and service time distributions.

7.2.1 Tests on the data at the national level

First of all, inspection of the data showed an increasing
trend of yearly arrivals to the waitlist. This was confirmed
using linear regression analysis. Since the yearly arrivals of
patients on the waitlist are “count” data, a square root
transformation was performed on the data before doing the
regression analysis. Transformations are required to satisfy
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Table 4 20002004 patient placement, organ availability, and living
donation rates

Rates
National rates
Previously waiting 311
Placements on waitlist (\) 3,009
Total 3,320
Cadaveric organs available (1) 1,812
Living donor transplants 199
Abandonment (includes Living donors) 1,104
British Columbia rates
Previously waiting 12
Placements on waitlist (\) 270
TOTAL 282
Cadaveric organs available (1) 168
Living donor transplants 10
Abandonment (includes Living donors) 102
Alberta rates
Previously waiting 13
Placements on waitlist (\) 495
TOTAL 508
Cadaveric organs available (1) 298
Living donor transplants 34
Abandonment (includes Living donors) 168
Ontario rates
Previously waiting 212
Placements on waitlist (\) 1,397
TOTAL 1,609
Cadaveric organs available (1) 703
Living donor transplants 143
Abandonment (includes Living donors) 620
Quebec rates:
Previously waiting 60
Placements on waitlist (\) 683
TOTAL 743
Cadaveric organs available (1) 529
Living donor transplants 1
Abandonment (includes Living donors) 164
Nova Scotia rates
Previously waiting 14
Placements on waitlist (\) 164
TOTAL 178
Cadaveric organs available (1) 114
Living donor transplants 6
Abandonment (includes Living donors) 47

the requirement of constant variance for regression. The
analysis showed that the slope was positive, suggesting an
increasing trend, with a p value of 0.007. Therefore we
concluded that the number of patients arriving to the
waitlist is indeed increasing yearly.

Initial analysis using a chi square goodness-of-fit test
demonstrated that the arrivals of patients onto the waitlist,
considered as national aggregate data, during the time
period Jan 1, 2000 to Dec. 31, 2004, did not follow a
Poisson distribution. It is likely that physician intervention,

@ Springer

based on their knowledge of the status of the waitlist,
affects the placement of patients; other factors may
influence this outcome as well.

7.2.2 Regional data

Since the queues actually function as six individual queues
(with minimal sharing), considering a national waitlist is
somewhat artificial. Analysis of the individual regional
queues showed that none of the queues experienced a
Poisson distribution for arrivals to the queue. However, we
found that the arrivals of patients to the larger regional
waitlists were adequately described by a geometric distri-
bution. For example, considering the Quebec queue, there
were 680 arrivals in 1,827 days. A chi square goodness-of-
fit test for the Geometric distribution (with parameters p=
0.372 and p=0.729) showed a p value of 0.836. This means
that we cannot reject the null hypothesis that the arrivals for
the Quebec queue follow a geometric distribution. The
arrival of patients to the queue for London also appears to
follow a geometric distribution with parameters p=0.241
and p=0.806.

7.3 Distributions of service time

As noted above, we are in fact dealing not with one national
queue, but rather six regional queues. When considered on
an individual basis, analysis of the service time for the
regional queues by means of the chi square goodness-of fit
test showed that the larger centres do in fact satisfy the
Poisson model for organ availability. This is in fact not
surprising, in that the source of cadaveric donations is the
result of rare events occurring over a large population, such
as severe accidents or medical events such as aneurisms.
The Poisson distribution has often been used to model such
phenomena. Consequently, we feel it is reasonable to work
with the classical assumption of exponential service times
in our sensitivity analyses that follow.

In summary, we observe that the assumption of
exponential service times appears to reflect reality, and this
result has important consequences for us. In particular, it is
the assumption of exponentially-distributed service times
that leads to exponential distributions for the time a
customer spends in a single server queue, as we show in
the next section. The greater amount of deviation between
theory and reality lies in the area of the arrival mechanism.

8 Pertinent results from the theory of M/M/1
and GI/M/1 queues

The most widely-used single-server model is the M/M/1
queue, which assumes both Poisson arrivals at rate A and
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exponential service at rate p. For A>p, we have shown that
the queue length will tend to grow over time. So long as
A<y, the system can keep up with the demand in the long
run. For an M/M/1 queue with A<p, it is well-known (see
for instance Gross and Harris [6], p 64—68) that

Average waiting time (from arrival to departure)
=1/(p—=2) =1/[u(1-p)],

Probability that an arrival will wait more than ¢ time
to complete service = e~ """,

What is particularly appealing about these formulas is
their simple dependence upon the arrival and service rates.
It is a well-known queuing-theoretic result (see for instance,
Gross and Harris [6], section 5.3) that it is the exponential
service assumption that leads to the simple form of these
formulas. In fact, the single-server, exponential-service
queue with a general, independent renewal process for the
inter-arrival times (denoted the GI/M/1 queue) has the
following equivalent forms for the performance measures
(see ref. 6, pp. 252-253):

Average waiting time (from arrival to departure)

= 1/[p(1 = ro)],

Probability that an arrival will wait more than t time to

complete service = e #1770’

where the root 7y is the unique solution in the interval (0,1)
of a fixed point equation entailing the Laplace—Stieltjes
transform of the interarrival-time distribution. This root can
be found by factoring a quadratic equation in certain
circumstances, and numerically by successive substitution
otherwise. In contrast, without the exponential service
assumption, these simple forms do not apply even when
the arrival process is a Poisson process. In the so-called
M/G/1 queue, while the mean waiting times can still be
found easily (see ref 6, p.212), the exact expression for the
waiting time distribution for even some simple non-
exponential cases like the M/D/1 queue are quite complicat-
ed (see ref [14]). In fact, the M/D/1 waiting time distribution
does not appear in the standard references on queues.

8.1 Justification for (and implementation of) a GI/M/1 type
model

The use of the GI/M/1 model is typically hampered by the
fact that Poisson arrivals tend to occur more frequently in
reality than exponential service. In the transplant setting,
the situation is reversed: the availability of deceased-donor
livers is either described adequately by a Poisson process,
or its deviation from it is relatively minor. Below, we will

describe our proposal for handling the deviation of the
patient placement process from the Poisson process in our
GI/M/1 model.

There are still two other notable deviations of the actual
waitlists from the queuing model we are proposing for
them. The former of these is the question of blood type.
The blood type of a deceased donor liver will determine
who can get it, and who is likely to, whereas the proposed
first-come, first served model treats all blood types the
same. To analyse the impact of blood type precisely would
require not only knowledge of the arrival patterns of the
specific blood types (which is available), but also the other
aspects affecting physicians as they decide when to
transplant across blood group lines. It has until now been
generally held that such transplants are rare; however, the
evidence in Fig. 1 would seem to suggest it is less rare in
the Canadian context at least than previously thought.
Clearly, a detailed simulation model is needed to assess the
impact of blood type accurately.

Nonetheless, on a qualitative level, the impact of blood
type on waiting times of the various blood groups is known
in our view, according to the experience reported in Section
4. Blood group O patients will wait the longest, and longer
than a single-class queuing model would suggest, as they
require a type O organ. Type AB patients are universal
recipient, and as such, can be expected to have waits
markedly shorter than other blood types and shorter than
what a queuing model would suggest. Blood type A
candidates who have access to about 88% of the livers
(based on the Canadian numbers) can be expected to do
better than O and not as well as AB. Blood type B, having
access to about 55% of the livers should experience delays
somewhere between that seen by type O and type A patients.

The other aspect in which the actual waitlist deviates
from the proposed queuing model is the queue discipline.
The GI/M/1 model assumed a first-come, first-served
(FCFS) discipline; the reality is that sicker patients get
transplanted sooner. Qualitatively, this means that the actual
delay distribution would be more variable than a FCFS
model would suggest. We would anticipate that both the
fractions of patients experiencing short delays and those
experiencing long delays would be greater than our model
predicts. However, if the previous observation that 90% of
liver transplants in Canada are allocated on the basis of
waiting time alone [2] is still applicable, then the delays
suggested by our queuing model should still be fairly
accurate. Once again, a detailed simulation study is needed
to answer this question, and can address the related question
of the impact of changes to other service disciplines such as
giving priority on the basis of MELD scores.

Notwithstanding the foregoing limitations, a GI/M/1
queuing model can still provide informative answers to
the waiting-time aspects of key questions that decision
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makers associated with improving the situation of liver
transplant waitlists in Canada must consider. The current
discussion is focussed on where one should place additional
effort: towards encouraging more donor cards to be signed,
or to finding suitable living donors? In order to address this
question fully, one needs to consider the distributional
aspects of the waiting time. Just how much of a target
increase is needed for each of these types of remedies in
order to obtain a waitlist system which is not only stable,
but produces acceptable waiting times? These are system-
wide considerations that a GI/M/1-type model can provide
answers to.

Comparison of the previous formulas for the M/M/1 and
GI/M/1 queues reveals that the unique root r equals p in
the case of Poisson arrivals. In general, when the inter-
arrival time (IAT) distribution is more variable than an
exponential distribution, 7 is larger than p. This leads to
predictions of longer delays from the resulting GI/M/1
model. The converse situation occurs when the IAT
distribution is less variable. Such conclusions are consistent
with the general principle that greater variability in the
arrival and/or service processes leads to greater congestion,
and hence longer delays.

For the transplant waitlists, the inter-arrival time is more
variable than an exponential model. A simple model for
such inter-arrival times that relies only on the mean and
variance is a hyper-exponential distribution with balanced
means [15]. (The resulting queue is denoted H2/M/1.) This
distribution is formulated as a mixture of two exponential
distributions at rates A; and X, respectively, with a weight
of 0<p;<1 for the former and p,=1—p; for the latter. The
resulting inter-arrival time Laplace—Stieltjes transform is

A*(s) = pia /(s + M) + pada /(s + A7)
= (M2 4+ (pih +par2)s)/[(s + A1) (s + A2)]-

The unique root 0<ry<1 we seek satisfies ro=A (u(1—
r0)). When we substitute for 4*(s) above, a cubic equation
is obtained which has one root at unity. When this is
removed, the resulting quadratic equation has two positive

roots, and the smaller of these is the root we seek. Defining
pi=A/u for i=1,2, one obtains

ro = [(1 +pt+p) - \/{(1 + 1+ ) —4(p) P11+ P2 pz)}]/Z

The parameters of this hyper-exponential distribution
with balanced means are given by [15]

A =2pi/E{T} i=1,2;p; =0.5(1+{(cz = 1) /e +1})s pp=1—p,

where Cr2 = Var{T} / E{T}? is the squared coefficient of
variation of the inter-arrival time,and where E{T} and Var
{T} denote the mean and variance of the IAT respectively.
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A number of examples based on this model are presented in
the next section.

One final cautionary note is that the queuing formulas
we use are based on the assumption that the queue is, and
always has been, stable at the specified value of p. Since in
fact a substantial backlog of patients has accumulated,
substantial time will be needed to clear it.

9 Sensitivity analysis: assumptions and results

In this section we perform three sets of sensitivity analyses
which illustrate the degree of the problem, and the order of
magnitude of the response that is needed in order to provide
sufficient capacity to meet the need that was present at the
end of the study period. Preliminary results along this line
suggest that placements in the past few years appear to have
stabilized close to the 2004 levels [11].

We have replaced the regional queues by single queues,
for both the Ontario (Toronto and London waitlists com-
bined) and national analyses (all six waitlists combined). The
national waitlist provides a benchmark of the best that could
be achieved if the geographical aspect could be ignored. The
national waitlist model assumes that available organs would
be controlled and allocated centrally. The limiting factor
being the availability of organs, rather than physician or
operating room availability, a single server model is
appropriate, in that livers would be allocated successively
as they became available. Furthermore, if one were in a
stable transplant environment, no organ would be wasted if
there were no need for it regionally—it would cross the
country if there were a patient that could benefit from it.
Quantitatively however, the actual mean waiting times and
the probabilities of waits in excess of 1 month will be
typically greater in the regional waitlists than those forecast
by the national model. Of course, the sheer distances
involved in Canada argue against a central allocation policy,
which would see large numbers of livers travelling great
distances prior to transplant, during which the quality of the
organ would deteriorate.

Our primary goal here is to provide a reasonable estimate
of the numbers of additional livers needed to establish a
stable organ transplant system. Both M/M/1 and H2/M/1
models were used for the Ontario data. Only M/M/1 models
were used for the national data as we did not have access to
individual placement records for the whole country. Such
records are necessary in order to estimate the variability in
inter-arrival times. Due to the fact that actual inter-placement
times are more variable than the assumption of exponential
inter-arrival times allows, the waiting times suggested by the
M/M/1 model are likely to be optimistic. Where given, we
expect the H2/M/1 predictions to be a more accurate
barometer of waitlist performance.
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Table 5 Lottery System (2004

effective arrival rate, 5-year Ontario, M/M/1

Ontario, H2/M/1

average service rate)

Effective Arrival Rate (L)=308-p/year

A=308-p/year, p=141.2/year

Organ Availability Rate (u)=141.2/year Cr2=3.771
P Av. Wait P P Av. Wait P
(days) (Wait>1 month) (days) (Wait>1 month)
0.41 25 29% 0.41 55 57%
0.435 51 55% 0.435 117 77%
0.455 344 92% 0.455 818 96%

9.1 Other assumptions

In addition to the question of inter-arrival time variability,
there is reason to believe that successive placements of
patients on the waitlist might not occur independently in the
statistical sense. As we have not studied this phenomenon,
we cannot predict if the impact of this is beneficial or
detrimental to the degree of the delay incurred.

We note once again that we have ignored the impact of
blood type in the sensitivity analyses. To include blood type
in the analysis would require a much more complicated
queuing model, and the simulation model we will be
developing in coming work will be better able to reflect this
matter. At the same time, the qualitative impacts on delay
when blood type is consider have been discussed at some
length in the previous section, as was the matter than sicker
patients get transplanted first.

9.1.1 Results for the lottery system

Table 5 presents the average waiting times in days, and the
probability that a patient would wait in excess of 1 month
for those patients in Ontario who gain access to a lottery
system for three different chances of success. We chose a 1-
month benchmark arbitrarily to provide some reference
point for the likelihood of longer delays. In Table 5, we
have used the effective patient placement rates observed in
2004 (the actual rate, discounted by the number of living-
related donations), due to the increasing trend observed

over the study period. As there was no evidence of a trend
in cadaveric organ availability rates, we have used the
average of the five yearly rates as our point estimate for the
service rate. Three values of the lottery success probability
p were selected, chosen to produce queue utilizations of
close to 90%, 95%, and 99% respectively. Under these
assumptions, we can see that a fraction p on the order of
43% of patients could have been handled in Ontario. We
also observe that the mean delays are substantially longer
based on the H2/M/1 model than would be forecast using
an M/M/1 model.

The first three columns of Table 6 provide similar results
for a single national waitlist as based on the M/M/1 model.
About 55% of patients could be treated under a lottery
system if there were a single national waitlist. A smaller
fraction can be admitted in Ontario, because the effective
patient placement rate in 2004 was more than twice the rate
at which cadaveric organs became available. (Nationally,
the ratio was closer to 1.7.) Of course, this would penalize
the other waitlists and patients of their regions to Ontario’s
benefit.

9.1.2 Results for increased numbers of living donations

We also considered the number of living donors required
to bring stability to the transplant systems in Ontario as
well as nationally. Again, three values of the necessary
number LD of additional living donors would be needed,
this time so that the waitlist for the remaining patients

Table 6 National Lottery and

LD Results (2004 effective Lottery, Canada, M/M/1

Living Donor, Canada, M/M/1

arrival rate, 5-year average
service rate)

Effective Arrival Rate (L)=623-p/year
Organ Availability Rate (u)=362.4/year

Effective Arrival Rate (A\)=623-LD/year
Organ Availability Rate (1)=362.4/year

P Av. Wait (days) P LD Av. Wait (days) P
(Wait>1 month) (Wait>1 month)
0.52 10 4.1% 265 83 69%
0.55 19 19% 280 19 20%
0.58 344 92% 300 9 3.8%
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Table 7 Increased living don-
ations (2004 effective arrival

Ontario, M/M/1

Ontario, H2/M/1

rate, S-year average service

Effective Arrival Rate (L)=308-LD/year

A=308-LD/year, u=141.2/year

rate)
Organ Availability Rate (u)=141.2/year Cr2=3.771
LD Av. Wait (days) P LD Av. Wait (days) P
(Wait>1 month) (Wait>1 month)
170 114 77% 170 269 89%
175 45 50% 175 103 74%
180 28 33% 180 62 61%

would operate at utilisations p close to 99%, 95%, and
90% respectively.

Table 7 shows that a figure on the order of 175 patients
in Ontario would be needed to bring stability to the liver
transplant waitlists there, assuming that the patient place-
ment rates have not increased since 2004. Again, we sece
that the projected waiting times using the H2/M/1 model
are substantially longer than those forecast by the M/M/1
model.

The latter three columns of Table 6 above provide the
corresponding living-donor results for a single national
waitlist, based on the M/M/1 model. Nationally, something
on the order of 280 donors would be needed if this were the
only source of additional organs.

Using the B.C. figure of $5,500 in expenses paid per
living donor, this would represent an anticipated $962,500
expense for Ontario, or $1,540,000 nationally, assuming the
respective numbers of donors could indeed be found.

9.1.3 Results for increased cadaveric organ availability

Table 8 below indicates the degree by which the number of
cadaveric organs would have to increase, in the absence of
any further increase in the living donor rate beyond 2004
levels, in order to achieve stability in the hypothesised
Ontario waitlist. Once again, we have sought three values
of the degree of increase needed, to come close to
utilisations p of 99%, 95% and 90% respectively.

Roughly speaking, the cadaveric donation rate would
have to almost double nationally in order to achieve

stability; the comparable figures for Ontario shown below
are even larger Nationally, an increase in deceased donor
livers in the range of 175% to 190% would result in
average waiting times of 33 days to 6 days, as forecast by
an M/M/1 model. The fraction of patients waiting in excess
of 1 month to be transplanted would be about 40%
assuming a 175% increase in cadaveric livers, whereas it
would be about half a percent assuming a 190% increase.

If one were to assume arbitrarily that this would have to
be achieved by a comparable increase the rate of signed
donor cards, it could only be achieved if the current rate is
notably less than 50%. Otherwise, some amount of increase
in the number of living donors would be essential in
addition to an increase in the cadaveric rate, to bring about
a stable system.

10 Discussion

Even if one were to assume that the national demand for
livers has not increased from the rate evident near the end
of the study period, it is nonetheless approaching twice the
rate of availability from cadaveric sources. Without actions
that increase organ availability, a steady or increasing
number of patients who could benefit from transplant will
never see that stage, and the delays for those that do will
increase. In turn, this will mean an increasing number of
patients will die while waiting for transplant.

The latter part of this study attempted to quantify the
impact of no change in policy via a lottery system. It also

Table 8 Increased cadaveric

donations (2004 effective ar- Ontario, M/M/1

Ontario, H2/M/1

rival rate, 5-year average
service rate)

Effective Arrival Rate (A)=308/year Organ
Auvailability Rate (11)=141.2-g/year

Effective Arrival Rate (L)=308/year
Organ Availability Rate (1)=141.2q/year C72=3.771

q Av. Wait (days) P

(Wait>1 month)

q Av. Wait (days) P
(Wait>1 month)

220% 138 80% 220% 328 91%
230% 22 25% 230% 50 55%
240% 12 7.6% 240% 27 32%
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suggests likely increases in cadaveric and/or living donor
sources that would be needed to bring stability to the
system. We found that, without efforts to increase the
supply of organs, only 43% of listed patients in Ontario can
reasonably hope to receive an organ, assuming no further
increase in the patient placement rate. Nationally, about
55% of patients could be handled, under the same
assumption. If living donations are used to ensure all
patients have manageable waiting times in the queuing sense,
around 175 living donors per year would be needed in
Ontario, and 280 nationally. If these living donors were each
reimbursed the $5,500 maximum to defray costs that is being
paid currently in B.C. and which is being considered by the
government of Ontario, the anticipated cost would be about
$960,000 in Ontario, and $1.5 million nationally. Without
any increase in the number of living donations, the number
of donors from cadaveric sources would have to nearly
double nationally to ensure a sufficient number of organs.
The number in Ontario would have to more than double: a
130% increase would have to be observed. If the cadaveric
rate cannot be increased to this degree, living donations
would be needed to compensate. In all likelihood, major
efforts along both avenues are needed in order to bring
stability to the ever-growing waitlists.

11 Future work

We anticipate extensions to the present work in several
directions. First, we are embarking on a detailed simulation
of the waitlists to determine detailed waiting time answers
that reflect the many interacting factors at play, such as
selection based on health status and the impact of blood
type on patient selection rules under the current regime.
This simulation model will compare various patient
selection strategies, and their impact on overall patient
health. Among the protocols we wish to study are: (1)
random allocation; (2) allocation according to time spent in
queue; and (3) allocation according to the probability of
dying without transplantation, with the sickest being trans-
planted first. Once tested, we would like to refine the
models to analyse the clinical models, comparing CAN-
WAIT and the MELD system employed in the USA, in
order to identify the set or type of patients whose clinical
course would have been changed under MELD.

On the theoretical side, a priority queuing model in
which a customer’s priority level can increase suddenly (to
reflect changed health status) will be considered. It is hoped
that such a model would be tractable in the exponential-
service case that is justified in our setting.

An area of possible statistical study would be to estimate
the actual level of donor card signing, in Ontario as well as

the rest of Canada. Currently, not much seems to be known
in this regard.
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