Skip to main content
Article
The effects of large data gaps on estimating linear trend in autocorrelated data
Annual Fellowship Symposium of the Rocky Mountain NASA Space Grant Consortium
  • Troy A. Wynn
  • Vincent B Wickwar, Utah State University
Document Type
Conference Paper
Publication Date
5-1-2007
Disciplines
Abstract
It is well known that atmospheric data is autocorrelated. Techniques for fitting a model to autocorrelated data without data gaps are well known. However in cases where large data gaps exist the analysis ins more challenging. By large data gaps we mean 16-24% of the possible data present. This paper explores the challenges of estimating the correlation coefficient in an autocorrelated data set containing large data gaps and suggests ways to accurately estimate the autocorrelation and linear trend in a signal when such cases arise.
Comments

Conference paper presented at the Annual Fellowship Symposium of the Rocky Mountain NASA Space Grant Consortium. Full text available for download through link above.

Citation Information
Annual Fellowship Symposium of the Rocky Mountain NASA Space Grant Consortium, Salt Lake City, Utah, May 2007: The effects of large data gaps on estimating linear trend in autocorrelated data, T. A. Wynn* and V. B. Wickwar.