Skip to main content
Article
Annealing post-drawn polycaprolactone (PCL) nanofibers optimizes crystallinity and molecular alignment and enhances mechanical properties and drug release profiles
Materials Advances
  • M. D. Flamini
  • T. Lima
  • K. Corkum
  • N. J. Alvarez
  • Vincent Beachley, Rowan University
Document Type
Article
Version Deposited
Published Version
Publication Date
3-9-2022
DOI
10.1039/D1MA01183A
Abstract

Post-drawn PCL nanofibers can be molecularly tuned to have a variety of mechanical properties and drug release profiles depending on the temperature and time of annealing, which has implications for regenerative medicine and drug delivery applications. Post-drawing polycaprolactone (PCL) nanofibers has previously been demonstrated to drastically increase their mechanical properties. Here the effects of annealing on post-drawn PCL nanofibers are characterized. It is shown that room temperature storage and in vivo temperatures increase crystallinity significantly on the order of weeks, and that high temperature annealing near melt significantly increases crystallinity and molecular orientation on the order of minutes. The kinetics of crystallization were assessed using an anneal and quench approach. High temperature annealing also increased the ultimate tensile strength and toughness of the fibers and changed the release profile of a model drug absorbed in PCL nanofibers from first-order to zero-order kinetics.

Comments

This article is published by RSC with a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Creative Commons License
Creative Commons Attribution-Noncommercial 3.0
Citation Information
M.D. Flamini, T. Lima, K. Corkum, N.J. Alvarez, & V. Beachley. Annealing post-drawn polycaprolactone (PCL) nanofibers optimizes crystallinity and molecular alignment and enhances mechanical properties and drug release profiles. Materials Advances 2022, 7(3), 3303-3315.