Skip to main content
Article
The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding.
Molecular and Cellular Biology (2005)
  • Marta Hristova
  • Darcy Birse
  • Yang Hong
  • Victor R. Ambros
Abstract
A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare the mRNA abundance of C. elegans genes in wild-type animals to that in mutants with reduced or elevated lin-14 activity. Five of the candidate LIN-14 target genes identified by microarrays, including the insulin/insulin-like growth factor family gene ins-33, contain putative LIN-14 consensus sites in their upstream DNA sequences. Genetic analysis indicates that the developmental regulation of ins-33 mRNA involves the stage-specific repression of ins-33 transcription by LIN-14 via sequence-specific DNA binding. These results reinforce the conclusion that lin-14 encodes a novel class of transcription factor.
Publication Date
December 1, 2005
Publisher Statement
Publisher PDF posted as allowed by the publisher's author rights policy at http://journals.asm.org/site/misc/ASM_Author_Statement.xhtml.
Citation Information
Marta Hristova, Darcy Birse, Yang Hong and Victor R. Ambros. "The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding." Molecular and Cellular Biology Vol. 25 Iss. 24 (2005)
Available at: http://works.bepress.com/victor_ambros/40/