Preeclampsia (PE) and intrauterine growth restriction (IUGR) are pregnancy complications resulting from abnormal placental development. As epigenetic regulators, microRNAs can regulate placental development and contribute to the disease pathophysiology by influencing the expression of genes involved in placental development or disease. Our previous study revealed an increase in miR-210-5p expression in placentae from patients with early-onset pregnancy complications and identified candidate gene targets for miR-210-5p. The purpose of this study was to: (i) validate candidate gene targets predicted for miR-210-5p from microRNA-RNA expression data, and (ii) overexpress miR-210-5p in a trophoblast cell line (HTR-8/SVneo) to assess impact on trophoblast cell functions. Integration of the miRNA and RNA sequencing expression data revealed 8 candidate gene targets for miR-210-5p in patients with PE only or PE + IUGR. Luciferase reporter assays identified two gene targets for miR-210-5p, CSF1 and ITGAM. Real-time PCR confirmed the decreased expression of CSF1 and ITGAM in patients with PE + IUGR. Immunohistochemistry of placentae from late second trimester identified CSF1 and ITGAM in intermediate trophoblast cells in the decidua. Expression levels of CSF1 and ITGAM were reduced in HTR-8/SVneo cells following increased miR-210-5p expression. Concomitantly, HTR-8/SVneo cells demonstrate an average 45% reduction in cell migration. These findings suggest that miR-210-5p may contribute to dysfunction of intermediate trophoblasts and potentially contribute to the disease process of these pregnancy complications.
Available at: http://works.bepress.com/victor-han/4/
Available at: https://doi.org/10.1016/j.preghy.2020.01.002