Kisspeptin receptor agonist (FTM080) increased plasma concentrations of luteinizing hormone in anestrous ewes

Brian K Whitlock, University of Tennessee - Knoxville
Joseph A Daniel, Berry College
Lisa L Amelse, University of Tennessee - Knoxville
Valeria M Tanco
Kelly A Chameroy, University of Tennessee - Knoxville, et al.
Kisspeptin receptor agonist (FTM080) increased plasma concentrations of luteinizing hormone in anestrous ewes

Brian K Whitlock, Joseph A Daniel, Lisa L Amelse, Valeria M Tanco, Kelly A Chameroy, F Neal Schrick

Kisspeptin receptor (KISS1R) agonists with increased half-life and similar efficacy to kisspeptin in vitro may provide beneficial applications in breeding management of many species. However, many of these agonists have not been tested in vivo. These studies were designed to test and compare the effects of a KISS1R agonist (FTM080) and kisspeptin on luteinizing hormone (LH) in vivo. In experiment 1 (pilot study), sheep were treated with FTM080 (500 pmol/kg BW) or sterile water (VEH) intravenously. Blood was collected every 15 min before (1 hr) and after (1 hr) treatment. In experiment 2, sheep were treated with KP-10 (human Metastin 45-54; 500 pmol/kg BW), one of three dosages of FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW], or VEH intravenously. Blood was collected every 15 min before (1 hr) and after (4 hr) treatment. In experiment 1, FTM080:500 increased (P < 0.05) plasma LH concentrations when compared to VEH. The area under the curve (AUC) of LH following FTM080:500 treatment was also increased (P < 0.05). In experiment 2, plasma LH concentrations increased (P < 0.05) following treatment with KP-10 and FTM080:5000 when compared to VEH and FTM080:500. The AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10. These data provide evidence to suggest that FTM080 stimulates the gonadotrophic axis of ruminants in vivo. Any increased half-life and comparable efficacy of FTM080 to KP-10 in vitro does not appear to translate to in vivo in sheep.
Kisspeptin Receptor Agonists Stimulates Luteinizing hormone in Sheep

TITLE

KISSPEPTIN RECEPTOR AGONIST (FTM080) INCREASED PLASMA CONCENTRATIONS OF LUTEINIZING HORMONE IN ANESTROUS EWES

Brian K. Whitlock*,1, Joseph A. Daniel2, Lisa L. Amelse1, Valeria M. Tanco1, Kelly A. Chameroy1, and F. Neal Schrick3

1Department of Large Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996 USA
2Department of Animal Science, Berry College, Mt. Berry, GA 30149
3Department of Animal Science, The University of Tennessee, Knoxville, TN 37996

Correspondence: Brian K. Whitlock
Department of Large Animal Clinical Sciences
College of Veterinary Medicine
The University of Tennessee, Knoxville, TN 37996 USA
Tel:(865)974-5701; Fax:(865)974-5773
email:bwhitloc@utk.edu

Key Words: Kisspeptin, Agonist, Luteinizing hormone, Sheep

ABSTRACT

Background/Aims: Kisspeptin receptor (KISS1R) agonists with increased half-life and similar efficacy to kisspeptin in vitro may provide beneficial applications in breeding management of many species. However, many of these agonists have not been tested in vivo.
These studies were designed to test and compare the effects of a KISS1R agonist (FTM080) and kisspeptin on luteinizing hormone (LH) \textit{in vivo}.

\textbf{Methods:} Experiment 1 (pilot study): Sheep were treated with FTM080 (500 pmol/kg BW) or sterile water (VEH) intravenously. Blood was collected every 15 min before (1 hr) and after (1 hr) treatment. Experiment 2: Sheep were treated with KP-10 (human Metastin 45-54; 500 pmol/kg BW), one of three dosages of FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW], or VEH intravenously. Blood was collected every 15 min before (1 hr) and after (4 hr) treatment.

\textbf{Results:} Experiment 1: FTM080:500 increased (P < 0.05) plasma LH concentrations when compared to VEH. The area under the curve (AUC) of LH following FTM080:500 treatment was also increased (P < 0.05). Experiment 2: Plasma LH concentrations increased (P < 0.05) following treatment with KP-10 and FTM080:5000 when compared to VEH and FTM080:500. The AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10.

\textbf{Conclusions:} These data provide evidence to suggest that FTM080 stimulates the gonadotropic axis of ruminants \textit{in vivo}. Any increased half-life and comparable efficacy of FTM080 to KP-10 \textit{in vitro} does not appear to translate to \textit{in vivo} in sheep.

\textbf{INTRODUCTION}
Kisspeptin and the kisspeptin receptor (KISS1R) are integral to central regulation of the gonadotropic-axis [1-3]. Intravenous infusion of kisspeptin to sheep in the non-breeding season elevated gonadotropin secretion and caused ovulation [4]. The demonstration that intravenous infusion of kisspeptin can stimulate ovulation in seasonally anestrous female sheep offers a means of manipulating the reproductive axis. However, kisspeptin may be of limited clinical use because of the short circulating half-life [5-8]. Rational modification of KISS1R agonists were synthesized to be resistant to matrix metalloproteinase (MMP) activity and found to have increased half-life in murine serum, and to have comparable binding affinity and efficacy in vitro to kisspeptin [9]. However, in vivo activities of these peptides have not yet been studied. Thus, the present experiments were designed to determine and compare the effect of a novel KISS1R agonist and kisspeptin on plasma LH concentrations in seasonally anestrus female sheep.

MATERIALS AND METHODS

All procedures were approved by the Berry College (Rome, GA) Institutional Animal Care and Use Committee (Protocol No. 2011/12-010). Sheep were housed at the Ruminant Research Unit at Berry College (Latitude = 34°18'8.33"N; Longitude = 85°11'45.29"W), exposed to average ambient temperature (25°C average daily temperature) and summer photoperiod (14:10 [L:D] hr) throughout the experiments (June), and fed a maintenance diet calculated to meet 100% of daily requirements [10]. During the experiments sheep were kept in individual pens (1.2 X 1.2 m) to facilitate IV injection and serial blood collections.
The effects of a novel KISS1R agonist (FTM080: 4-fluorobenzoyl-Phe-Gly-Leu-Arg-Trp-NH₂; Graduate School of Pharmaceutical Sciences, Kyoto University) [9, 11] and KP-10 (a biologically active C-terminally amidated cleavage fragment of kisspeptin, human Metastin 45-54, 4389-v, Peptide Institute Inc., Osaka, Japan) on plasma LH concentrations in anestrous sheep was tested. To reduce the influence of sex steroids on the kisspeptin-KISS1R system, studies were conducted during a long photoperiod to increase the likelihood of ewes being anestrous [12]. In addition, blood samples were collected before and after the experiments (7 days between samples) and assayed to determine progesterone concentrations. Data from animals with circulating progesterone concentrations greater than 1 ng/mL (indicating active luteal tissue and therefore cyclicity) were excluded from the analysis. To facilitate treatment administration and blood sampling, each animal was fitted with an indwelling intravenous jugular catheter the day before experimentation.

Experiment 1: Eight adult parous Katahdin female sheep [41.6 ± (SEM) 1.3 kg] were used in this experiment. Sheep were treated with FTM080 (500 pmol/kg BW; FTM080:500) or sterile water (Vehicle; VEH) in a 2-mL bolus via the jugular cannula. Serial blood samples (every 15 min; 3-mL each) were collected before (for 1 hr) and after (for 1 hr) treatment. Blood was collected into tubes containing 7.5 mg EDTA. Plasma was stored at -20°C for radioimmunoassay (RIA) of LH and progesterone.

Experiment 2: Twenty-one adult parous Katahdin female sheep [48.2 ± 5.1 kg] were used in this experiment. Sheep received one of five treatments [sterile water (VEH), KP-10 (500 pmol/kg BW), or FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW]] in 2-mL bolus via the jugular cannula. Samples were collected and handled in the
same manner as described in Experiment 1 except blood samples were collected for a total of 4 hr after treatment.

Plasma LH concentrations were assayed by double-antibody RIA using materials supplied by the National Hormone and Pituitary Program of NIDDK as previously described [13]. Limit of detection and intra-assay and inter-assay coefficient of variance were 0.125 ng/ml and 5.5% and 9.9% for the LH assays, respectively. Plasma progesterone concentrations were determined using the Coat-a-Count® Progesterone RIA kit (Siemens, Los Angeles, CA, USA) [14-17]. Limit of detection and intra-assay coefficients of variance for the progesterone assay were 0.1 ng/mL and 14.9%, respectively.

For Experiments One and Two circulating concentrations of LH were tested for effect of treatment, time, and treatment by time interaction using ANOVA procedures for repeated measures with JMP Software (version 7 SAS Inst. Inc., Cary, NC). Area under the LH concentration curve pre (-60 to 0 min) and post (0 to 60 min) treatment was calculated using the trapezoid method with MSExcel Software. Area under the LH curve was tested for effect of treatment, period (pre- or post-treatment), and treatment by period interaction using ANOVA procedures for repeated measures with JMP Software (version 7, SAS Inst. Inc., Cary, NC). Means separation was performed using Student’s T test when appropriate.

RESULTS

Experiment 1: Two ewes (one per treatment) were excluded from the analysis and results because their plasma progesterone concentrations were greater than 1 ng/mL (2.60 and 1.70 ng/
mL) thus plasma LH concentrations from six ewes (three ewes per treatment group) were analyzed and reported. Plasma progesterone concentrations for the remainder of the animals were less than 1 ng/mL [0.12 ± 0.08 (SEM) ng / mL] before and after the experiment. Mean ± SEM plasma LH concentrations before treatment were 0.31 ± 0.16 ng/mL and 0.14 ± 0.06 ng/mL for animals treated with VEH and FTM080:500, respectively. Mean plasma LH concentrations after treatment were 0.21 ± 0.08 ng/mL and 0.97 ± 0.72 ng/mL for animals treated with VEH and FTM080:500, respectively. There was an effect of time (P = 0.0019) and a treatment by time interaction (P = 0.0009) on plasma LH concentrations. Plasma LH concentrations for FTM080:500 treated animals were greater than (P < 0.05) VEH from 0 to 45 minutes following treatment (Figure 1A).

An effect of period (pre- and post-treatment) (P = 0.0464) and a period by treatment interaction (P = 0.0150) was found when analyzing the area under the LH curve. The area under the curve of LH for FTM080:500 treated animals was greater than (P < 0.05) VEH from 0 to 60 minutes following treatment (Figure 1B).

Experiment 2: One ewe (VEH group) was excluded from the analysis and results because of high plasma progesterone concentrations (7 days post-experiment; 2.50 ng/mL). Plasma LH concentrations from a total of 20 ewes (representing 4 ewes per treatment group) were analyzed and reported. Plasma progesterone concentrations for the 20 animals included in the analysis were less than 1 ng/mL (0.16 ± 0.01 ng/mL) before and after the experiment. Mean ± SEM plasma LH concentrations were 0.59 ± 0.37 ng/mL, 0.78 ± 0.38 ng/mL, 0.43 ± 0.24 ng/mL, 0.58 ± 0.37 ng/mL, and 0.53 ± 0.28 ng/mL before treatment with VEH, KP-10, FTM080:500, FTM080:2500, and FTM080:5000 pmol/kg, respectively. Mean plasma LH
concentrations were 1.35 ± 0.20 ng/mL, 1.93 ± 0.37 ng/mL, 0.97 ± 0.13 ng/mL, 0.94 ± 0.13 ng/mL, and 1.29 ± 0.29 ng/mL after treatment with VEH, KP-10, FTM080:500, FTM080:2500, and FTM080:5000 pmol/kg, respectively. There was an effect of treatment (P = 0.0134) on mean plasma LH concentrations. Mean plasma LH concentration following treatment with KP-10 (1.93 ± 0.37 ng/mL) was greater than all treatments except FTM080:5000. There was also an effect of time (P < 0.0001) and an interaction of treatment and time (P < 0.0001) on plasma LH concentrations. Plasma LH concentrations following treatment with KP-10 were greater than (P < 0.05) the VEH through the 45-min sample, FTM080:500 at the 30- and 45-min samples, and FTM080:2500 at 30-min (Figure 2A). Plasma LH concentrations following FTM080:5000 was greater than (P < 0.05) VEH through the 30-min sample and FTM080:500 at the 15-min samples (Figure 2A).

There was an effect of treatment (P < 0.0001), period [pre-treatment (-60 to 0 min); 1 hour post-treatment (0 to 60 min); P < 0.0001], and an interaction of treatment and period (P < 0.0001) on area under the curve (AUC) of plasma LH concentrations. The 1 hour post-treatment AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the 1 hour post-treatment AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10 (Figure 2B). The AUC of LH in the 1 hour post-treatment period was greater than (P < 0.05) the AUC of LH in the pre-treatment period (-60 to 0 min) for FTM080:500 and FTM080:2500 (Figure 2B).

DISCUSSION
FTM080 was recently identified as a potent KISS1R agonist by structure-activity relationship studies on kisspeptin [11, 18]. It has been reported that kisspeptin is inactivated by the cleavage of the Gly-Leu peptide bond in the C-terminal region by MMPs [19]. Since kisspeptin and FTM080 share a common sequence (Phe-Gly-Leu-Arg) of the MMP-mediated cleavage site, FTM080 would be also deactivated by MMP-mediated digestion. However, the half-life of FTM080 in murine serum (6.6 h) is greater than that of KP-10 (completely digested within 1 h) and substitution of the Gly-Leu dipeptide moiety in FTM080 with appropriate dipeptide isosteres resulted in peptides (e.g. FTM145) resistant to degradation by MMP-2 and -9, more stable in murine serum (e.g. compound FTM145 half-life = 38 h), while maintaining bioactivity for KISS1R in vitro [9]. However, in vivo activities of these peptides were not studied. Studies on pentapeptides derived from C-terminal kisspeptin fragments have been mainly focused on the design of analogs with superagonistic properties in vitro. Many previously developed pentapeptides, with apparent full agonistic activity at the KISS1R in cellular models, have not been evaluated in terms of gonadotropin secretion in vivo.

Results of the present study revealed that intravenous FTM080 stimulated plasma LH concentrations in anestrous sheep. In Experiment 1 (pilot study), plasma LH concentrations increased approximately 7-fold between 0 and 45 minutes following intravenous treatment with FTM080 (from 0.14 to 0.97 ng / mL). The magnitude and duration of the LH-response following treatment with FTM080 in Experiment 1 was similar to previous observations in ovariectomized sheep given comparable doses of KP-10 [4, 20].

In Experiment 2 (a comparison of the effects of FTM080 and KP-10 on plasma LH concentrations in sheep) KP-10 stimulated the greatest magnitude and duration of LH-response
Kisspeptin Receptor Agonists Stimulates Luteinizing hormone in Sheep

(0.64 to 5.55 ng / mL and 45 min, respectively). Caraty et al., [4] reported that an intravenous bolus of KP-10 of approximately half the molar dose used in this experiment (500 pmol / kg) increased concentrations of LH in plasma of seasonally acyclic ewes from 0.2 ng / mL to 8.0 ng / mL which was similar to the response observed here. Although FTM080 did elicit a comparable LH-response (0.76 to 4.58 ng / mL), the dose necessary was 10-fold greater than the dose of KP-10 used (5000 versus 500 pmol/kg, respectively). Moreover, although the in vitro half-life of FTM080 was greater than KP-10 [9], the duration of the LH-response following an intravenous dose of FTM080 was less than the duration following a 10-fold lesser dose of KP-10 (30 min versus 45 min, respectively).

In vitro screening and assays are useful to select agonist analogs for further in vivo studies. By improving biological stability while maintaining in vitro agonistic and receptor binding activity to KISS1R Asami et al., [23] identified the potent kisspeptin agonist analogue, TAK-683. TAK-683 was administered in several mammalian species including goats [24] and men [25] demonstrating excellent gonadotropin releasing activity in vivo at low doses. However, in vitro and in vivo activity/potency of KISS1R agonists do not always agree [21, 22]. For instance, while KP-10 analog [dY]1KP bound to the KISS1R with a 4-fold lower affinity and had similar potency in vitro it had a more potent effect (4-fold) on LH than KP-10 in vivo [22]. Alternatively, another KP-10 analog, ANA5, bound with higher affinity to the KISS1R than kisspeptin but it was not more potent in vitro and less potent in vivo than KP-10 [22]. Thus although some kisspeptin analogs may act as KISS1R superagonists in specific in vitro systems, they may not have greater activity than kisspeptin in vivo.
It is interesting to speculate on mechanisms for the different responses obtained between TOM080 and KP-10 and why responses to TOM080 in sheep do not agree with those observed in vitro. There is the possibility that shorter kisspeptin analogs (FTM080 is pentapeptide) have some limitation in terms of efficacy. The C-terminal amino acids of KP-10 (decapptide that is a biologically active C-terminally amidated cleavage fragment of kisspeptin) are critical for efficient KISS1R binding [26] resulting overall in a greater focus on the screening of decapptide instead of pentapeptide analogs of kisspeptin as potential KISS1R agonists. The difference in response observed here might also be the result of the animal model used for the in vivo experimentations. While previous in vitro assays with FTM080 were conducted with human KISS1R [11, 18] the activity of FTM080 to sheep KISS1R has not been investigated. Contrarily, similar doses of kisspeptin have been administered to various species and various routes resulting very often in similar and comparable responses [27]. Differences in tissue distribution of KP-10 and FTM080 may be another possibility to explain differential in vivo efficacy. Only centrally, but not peripherally, administered KP-10 increased serum concentrations of growth hormone in sheep [20]. Likewise, only centrally, but not peripherally, administered KP-10 induced c-Fos in GnRH neurons, suggesting that differential site of action of kisspeptin causes differential gonadotropin releasing efficacy in vivo [28]. Differences in tissue distribution, especially at the hypothalamus, of FTM080 and KP-10 were not determined in this study. Pharmacokinetic profiles, including but not limited to clearance, is another possible explanation for the different response observed between FTM080 and KP-10. Higher clearance of FTM080 from the sheep circulation than KP-10 could be hypothesized to rationalize the lesser in vivo activity.
In conclusion, these data provide evidence to suggest that FTM080, a KISS1R agonist, stimulates the gonadotropic axis of ruminants in vivo. However, the increased half-life and comparable efficacy of FTM080 to KP-10 in vitro [9] does not appear to translate to longer duration of efficacy in vivo in sheep.

REFERENCES

8 Plant TM, Ramaswamy S, Dipietro MJ: Repetitive activation of hypothalamic g protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 2006;147:1007-1013.
Kisspeptin Receptor Agonists Stimulates Luteinizing hormone in Sheep

Figure 1; Effect of i.v. KISS1R agonist, FTM080, on plasma LH concentrations in anestrous ewes (n = 3). a Response of circulating concentration of LH (mean ± pooled SEM = 0.13) to i.v. administration of VEH and FTM080 (500 pmol/kg BW; FTM080:500). There was an effect of time (P = 0.0019) and an interaction for FTM080 by time for LH (P = 0.0009). * p < 0.05 vs. VEH. b Effect of i.v. administration of VEH and FTM080 (500 pmol/kg BW; FTM080:500) on AUC of LH concentrations from -60 to 0 min before (Pre-TRT) and from 0 to 60 min following treatment (Post-TRT) (mean ± pooled SEM = 6.29). AUCs with different superscripts differ (p < 0.05).

Figure 2; Effect of i.v. KP-10 and FTM080, KISS1R agonist, on plasma LH concentrations in anestrous ewes (n = 4). a Response of circulating concentration of LH (mean ± SEM) to i.v. administration of VEH (sterile water), KP-10 (500 pmol/kg), and FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW]. There was an effect of time (P < 0.0001) and an interaction of treatment and time (P < 0.0001) on plasma LH concentrations. * p < 0.05 vs. VEH. † p < 0.05 vs. FTM080:500. ‡ p < 0.05 vs. FTM080:2500. b Effect of i.v. administration of VEH (sterile water), KP-10 (500 pmol/kg BW), and FTM080:500, FTM080:2500, or FTM080:5000 on AUC of plasma LH concentrations from -60 to 0 min before (Pre-TRT) and from 0 to 60 min following treatment (1 hour Post-TRT) (mean ± SEM). There was an effect of treatment (P < 0.0001), period [pre-treatment (-60 to 0 min); post-treatment (0 to 60 min); P < 0.0001], and an interaction of treatment and period (P < 0.0001) on area under the curve (AUC) of plasma LH concentrations. AUCs with different superscripts differ (p < 0.05).
Kisspeptin Receptor Agonists Stimulates Luteinizing hormone in Sheep

Fig. 1A
Kisspeptin Receptor Agonists Stimulates Luteinizing hormone in Sheep

Fig. 1B

![Graph showing AUC of LH (ng/mL 60 min) for VEH and FTM080:500]

- Pre-TRT: VEH with 'a' and 'a'
- Post-TRT: FTM080:500 with 'a' and 'b'
Kisspeptin Receptor Agonists Stimulates Luteinizing hormone in Sheep

Fig. 2A
Kisspeptin Receptor Agonists Stimulates Luteinizing hormone in Sheep

Fig. 2B

![Diagram showing AUC of LH (ng/mL 60 min) for different treatments](image-url)

Legend:
- VEH
- FTM080:500
- FTM080:2500
- FTM080:5000
- KP

Pre-TRT and Post-TRT comparisons with different letters indicate significant differences.