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Abstract 
 

The elderly population of the world continues to grow 
and, therefore, creates a need for heightened safety 
measures. Smartphones have been broadly adopted through-
out age categories and mobile applications are extremely 
useful during all types of daily activities; popular applica-
tions today not only target recreational uses, but also health 
tracking and awareness. As men and women over the age of 
65 continue to lead active lives, a smartphone application 
that can detect falling incidents would be very useful. In this 
research project, a fall-detection application was developed 
that utilized the acceleration sensor embedded in most mo-
bile devices. The application continuously monitored a per-
son’s movement and checked multiple threshold points for a 
fall impact. Upon impact, phone settings were utilized to 
communicate with a contact for immediate assistance. The 
algorithm was successfully implemented, based on the An-
droid platform and its accuracy was tested with eight sub-
jects, who performed 135 fall experiments overall. The 
measured sensitivity was calculated to be 92% and the 
measured specificity was 100%. 
 

Introduction and Related Works 
 

The life expectancy of the elderly population, specifically 
regarding those over the age of 65, continues to increase, 
thanks to better healthcare technology and available treat-
ment options [1]. The median age increased significantly 
from 29.5 to 37.2 in the time period from 1960 to 2010, 
resulting in a 13% increase of the overall elderly population 
in the U.S. [2]. Therefore, different challenges for the elder-
ly population were introduced to health professionals; these 
are commonly related to fatigue and incidents in addition to 
particular illnesses [1], [3], [4]. Among these identified inci-
dents, falls represent one of the most frequent cases that 
challenges the elderly population. Although it is difficult to 
define a specific fall event and collect the fall-related re-
ports, various studies have shown that almost 30% of elder-
ly persons fall at least once a year [1], [3], a number that 
corresponds to more than 10 million elderly in the U.S., 
who would experience a fall incident within a year [2]. The 
consequences from falling can be fatal in extreme cases or 
can lead to serious health problems [1], [3]. Thus, several 
studies have focused on the causes, consequences, and pre-
vention methods of falls in the elderly population [5-7].  

On the other hand, fall detection methods have been ex-
plored increasingly during the last two decades. Although 
several techniques are commonly used to detect a fall inci-
dent, studies are often classified into two main groups: ac-
celerometer/gyroscope-based and video-based [8-11]. While 
accelerometer-based sensors typically have to be carried by 
the subject on certain locations of the body, such as one’s 
waist, knees, or head, video-based systems suffer from com-
plicated installation procedures and privacy issues that stem 
from monitoring [8-12]. In this paper, the authors focus on 
the application of accelerometer-based sensors, which rely 
on fluctuations in tilt and motion to detect a fall incident.  

 
The majority of accelerometer-based fall detectors rely on 

2D or 3D accelerometers and/or gyroscopes. In most cases, 
the location of the sensing device determines the accuracy 
of the system. Typically, multiple sensors in different re-
gions of the body were employed in past studies and thresh-
old-based fall detection algorithms were utilized [11], [13-
15]. However, these prior works relied on the sensor to be 
fixed on the waist, which limited the practical use of the 
system. Commercial sensor boards were also implemented 
as wearable fall and posture detectors [16], [17]. Although 
all these systems reached high sensitivity and specificity 
levels, they either utilized more than one worn sensor or a 
limited, fixed location of the sensor itself. 

 
Healthcare companies have also been working on effi-

cient and affordable solutions that can help with a fall inci-
dent. Most of the products are simply push-button-activated 
emergency call systems in which users carry a wireless-
enabled button, usually worn as a wristband, pendant, or 
belt clip, requiring button activation when the fall occurs. 
This signal simply activates a phone call to the healthcare 
unit and a 2-way telephone communication is established 
[18-20]. Sensitive floor mats have also been used to track a 
person and determine if he/she reached the bedroom door 
while traveling from the bed [21]. Some of the most com-
mon systems currently on the market are not phone-based 
applications and, hence, require a separate sensing system 
and charge a monthly fee. For example, The Brickhouse 
Alert Fall Monitoring System relies on a CST (Custom Sen-
sors and Technology) sensing system with 24-hr service. 
Similarly, Link to Life Fall Detector, CST-L TL, and Prime 
Medical Alert Amber Select use the same technology [22], 
[23]. Each relies on a tilt sensor to detect a fall and has a 
device attached to the person, most commonly a pendant-
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style device. One of the most complete devices is Halo 
Monitoring, which uses an accelerometer sensor similar to 
this smartphone application (App). It is worn on either the 
chest or on a belt clip and tracks vital signs, sleeping pat-
terns, and activity levels. Caregivers are notified by user 
preference but the systems require a landline or computer 
for tracking.  

 
While there are successful prototypes and products availa-

ble today, almost all of the systems require significant atten-
tion by the user and feature rigorous installation procedures. 
An affordable and easy-to-use point-of-care solution for fall 
detection and notification has attracted significant interest. 
With recent advances in smartphone technology, researchers 
have been taking advantage of using embedded sensors that 
are readily available in the phone and have been developing 
algorithms for fall detection [24-27]. However, most of the 
algorithms currently require that the phone be kept in a cer-
tain orientation. Smartphone Apps such as T3Lab Fall De-
tection and Fade are free and utilize the accelerometer sen-
sor built into the phone. The T3Lab App, which continuous-
ly runs in the background of the smartphone, allows an 
alarm to sound when a fall is detected. However, the App is 
very sensitive and can easily be false-triggered. The Fade 
App requires the user to turn it on and off and has a recov-
ery feature that allows for movement beyond a potential fall 
impact.  

 
With an aging population that features increasing num-

bers of adults over the age of 65 that remain independently 
living in their homes, the need for reliable fall detection is 
apparent. The convenience of a fall-detection App down-
loaded to one’s smartphone creates a sense of security, as 
daily activities are carried out without the need for any extra 
equipment. In this paper, the authors propose an Android-
based smartphone as a platform for fall detection. The pro-
posed algorithm is based on multiple thresholds including 
free fall, impact, orientation cross, and a long lie. The algo-
rithm is able to successfully detect an occurring fall, regard-
less of the device’s orientation and placement. The proposed 
approach enables reliable and accurate fall incident monitor-
ing through the utilization of smartphone applications by the 
elderly, which allows them to live independently in their 
own homes. Furthermore, the authors focus on the materials 
and methods of the fall-detection algorithm and test proto-
col. 

  

Fall Detection Algorithm 
 

The proposed algorithm was developed and tested using 
an HTC 4G LTE smartphone, which utilizes the Android 
4.1.1 (“Jelly Bean”) operating system. The phone itself rep-
resents the current mid-level range of smartphones available 

to users, with an approximate price of $200 with carrier 
subventions. The program’s offline data storage system al-
lows gathering of data in real time during program execu-
tion, with data processing available at a later time. A more 
in-depth description of the general Android application en-
vironment, which also features a simple interface suitable 
for a target population group and safeguards for real-life 
scenarios (e.g., setting a personal calling number instead of 
911) can be found in the study by Oner et al. [27]. 

 
Acceleration data were collected using the device’s em-

bedded accelerometer sensor in the fastest sampling mode, 
which was 50 samples per second (i.e., one sample every 20 
ms). The overall geometric average of the acceleration 
points, A, in each direction was calculated using Equation 
(1):  
 

(1) 
 
where,   
Ax  = acceleration in the –x direction in m/s2 
Ay  = acceleration in the –y direction in m/s2 
Az  = acceleration in the –z direction in m/s2 
 

An average was calculated for every 25 data points 
(approximately 500 ms). As a new data point was gathered, 
the oldest data point was discarded and a new average was 
calculated, implemented as a moving average. For example, 
at a point in time, where the data(i) was recorded, averaging 
for data(i-24) to data(i) was performed. The subsequent 
average calculation starting with the new data point i+1 
would, hence, consist of the window of values from data(i-

23) to data(i+1).  
 
Increasing the window size would further smooth the da-

ta, but alter the information needed in order to detect the fall 
with the proposed algorithm. In addition to the sliding win-
dow that was used by the fall detection algorithm, a second 
long-term average was created to increase the algorithm’s 
accuracy. This average value of the overall data was gener-
ated and reset every 30 seconds (approximately every 1500 
samples).  

 
The fall detection algorithm itself was primarily based on 

three different thresholds that were evaluated successively 
in order to identify different fall characteristics, as illustrat-
ed in Figure 1. These thresholds were based on the magni-
tude of changes found in the data over a fixed time period, 
in combination with phone orientation changes. As an addi-
tional precaution, the algorithm also evaluated the impacts 
that would indicate a fall (i.e., hitting a surface trailed by a 
period of lying). It should be noted that several of the 
threshold values that were part of the algorithm were experi-
mentally derived. 

2 2 2
x y z A A AA = + +
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Figure 1. Proposed Algorithm 

 
The initially filtered data were first evaluated against the 

long-term average data for a continuous decline, which was 
termed as the “Pit.” The Pit was set when the initially fil-
tered data were 3% below the moving average data. The pit 
threshold was reached if the real-time data went below 75% 
of the pit’s value, which was the first indication of the fall. 
While checking for this threshold, an assessment of whether 
the overall average had increased over the overall average at 
the time the pit was set within one second from the time that 
the pit threshold was triggered. The algorithm checked for 
the impact that constituted a typical fall, once both previous 
triggers had been set. As soon as the person hit the floor 
surface, acceleration reached a maximum value, due to the 
impact. If this impact’s reported short-term moving average 
data were larger than 1.925 times the overall average and 
within 1.2 seconds after the pit threshold was triggered, the 
algorithm would trigger the Peak detection switch (see Fig-
ure 2). These values were experimentally derived and found 
to be accurate, as described in the results section.  
 

Upon the trigger of the pit being set, a statistical analysis 
was performed. Once the data were below 75% of the over-
all average, the first point, P1, was stored. Then, the next 
point, P2, was stored when the data exceeded 75% of the 
data. Once both points were set and the data were greater 
than the overall average, the standard deviation and the per-
centage of data between the two stored points was calculat-
ed. The standard deviation was calculated using Equation 
(2): 
 

(2) 
 

where, 
N  = sample size 

xi  = the ith data value from the combined acceleration value 

  
 = the mean of the data gathered between the pit set and 
  pit release points 

Figure 2. A Representative Fall Event 

 
The percent of data to each point is calculated as the sta-

tistical data if it reaches a critical value of 0.12, which trig-
gers the statistical switch. If the algorithm detects an impact, 
where the statistical threshold is exceeded, a fall detection 
signal is generated. Another way of ensuring that the fall is 
detected is to evaluate the orientation of the phone or the 
sharpness of the free-fall signal. If a person falls, the phone 
would most likely be pointing in the z direction. The orien-
tation of the phone would be checked to determine if the 
acceleration in the z direction is close to 1 g, which would 
trigger the orientation switch. On the other hand, the deriva-
tive of the signal is calculated after the pit is set. If the de-
rivative of the acceleration in the z- direction, ∂Az/∂t, is 
greater than 11 times the amount of the overall average, the 
rate switch is triggered.  

 
If an impact after falling is identified or the data are deter-

mined to be close to the threshold, the algorithm evaluates 
whether a long-lie case is detectable. The data are consid-
ered close to the upper threshold if it rises above 1.75 times 
the overall average. In case of a longer time period after a 
fall, where a person lies, the acceleration magnitude be-
comes relatively stagnant (within 10% of a deviation from 
the overall average) for at least four seconds from the time 
of when the data breach the impact threshold or are close to 
that threshold (though other time periods could be facilitat-
ed in a straightforward manner). During the four seconds of 
evaluating the data, if the amount of data outside the 10% 
deviation is less than 20% then the long-lie trigger is acti-
vated. If the algorithm detects a time period of stagnant da-
ta, indicating a long lie, the orientation, and the rate of 
change correlates to a fall incident then a fall detection sig-
nal is generated (see Figure 2). 
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An idealistic representation of the typical data obtained 
and a representative sample of real-world data are illustrated 
in Figure 2. This test was performed, where the subject 
threw himself on a low bed, while the phone was in his 
pants’ pocket. The overall average and the moving average 
data were plotted. Corresponding threshold points were 
marked as the pit threshold, peak (impact), and long lie. The 
subset shows the axes crossing. A recovery algorithm was 
also implemented. Once the fall was detected, and if the 
original data stayed within 15% of the moving average, the 
subject was considered to be lying on the floor. However, if 
more than 35% of the data points for a certain time interval 
(the default was set to five seconds) were above or below 
the 15% range then the recovery switch was turned on. De-
pending on user preference, a fall with a recovery could be 
reported immediately or saved for future diagnosis. 

 
Figure 3 shows a snapshot of the Android App that was 

used for the tests. Two sensors were implemented in the 
algorithm: a fall sensor and a pedometer. The pedometer 
was used to test the functionality of the phone’s embedded 
accelerometer [27]. Each threshold was prompted at the 
App screen to monitor the program’s progress. When a fall 
was detected, the App gave a pop-up message that a fall had 
been detected. The App would be simplified significantly 
for the end-user.  

Figure 3. A Snapshot of the Application at the Time of the 

Detection of a Fall Event 

Human Subject Tests 
 
It was a big challenge to evaluate a fall detector in real-

world settings. Since it is ethically wrong to perform tests 
on elderly subjects, most studies focused on younger adults 
for experimental trials. Furthermore, there are no standard 
test scenarios that would be reasonable approximations for 
real-life simulations. Thankfully, some research groups 
have focused on developing test standards and evaluation 
metrics taking these considerations into account. Noury et 
al. [12], [28] developed a good set of scenarios that would 
generate both positive and negative fall events.  

 
Simulated real falls were also studied to evaluate different 

algorithms in terms of the sensitivity and specificity settings 
[29], [30]. Using these definitions, the specificity (ability to 
detect only a fall) and the sensitivity (ability to detect a fall) 
of the fall detection device were evaluated. In evaluating 
falls, there could be four different decisions that could occur 
[12], [28]: 

 
1.  True positive (TP): A fall event occurs and the device 

detects it. 
2.  False positive (FP): No fall occurs but the device 

gives a fall detection signal. 
3.  True negative (TN): No fall occurs and the device 

does not give a fall detection signal. 
4.  False Negative (FN): A fall event occurs but the de-

vice does not detect it. 
 
Sensitivity and specificity can then be defined as TN/

(TN+FP) and TP/(TP+FN), respectively [12], [28]. Test 
scenarios adapted from the work by Noury et al. [12], [28] 
were used to assess the proposed fall detection system’s 
accuracy. The following scenarios were expected to trigger 
a fall event: 

 
1. Backward fall 

a) ending sitting 
b) ending lying 
c) ending in a lateral position 

2. Forward fall 
a) on the knees 
b) with forward arm protection 
c) ending lying flat 
d) with rotation, ending in the lateral right position 
e) with rotation, ending in the lateral left position 

3.  Lateral fall 
a) ending lying flat to the right 
b) ending lying flat to the left 

4. Real-world backward fall 
a) assisted falling without letting the patient know 

the exact timing 
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The following scenarios were not expected to trigger a 
fall event: 

 
1. Syncope 

a)  a vertical slipping against a wall finishing in a 
sitting position 

2.  Neutral 
a)  sit down on a chair then stand 
b)  lie down on the bed then rise up 
c)  walk a few meters 
d)  bend down, catch something on the floor then rise 

up 
e)  cough or sneeze 

 
Real-world backward fall tests were performed using the 

method implemented by Klenk et al. [30]. In this test, sub-
jects were held inclined backwards about 30 to 40 degrees 
and allowed to fall onto a mattress on the floor with the in-
struction of “try not to fall.” Subjects did not know when 
the fall would be initiated. This way, real-world backward 
fall situations were simulated and the results were used to 
optimize the fall detection algorithm. Subjects were chosen 
from healthy adults (a health survey was conducted) ranging 
from 20 to 40 years old. Consent forms were given to the 
subjects and experiments were initiated after they signed. 
The University’s Institutional Review Board (IRB) ap-
proved the experimental procedures. Each fall scenario was 
first demonstrated and then the subjects were asked to per-
form those scenarios by putting the phone into their front 
pants’ pocket. It should be noted that placement of the 
phone in different locations could yield different results. 
Real-world backward fall tests were only performed with 
the subjects that felt comfortable executing the scenario. 
Each subject was asked to perform the 11 positive and six 
negative fall executions described above. Data from each 
fall were recorded at the event and subsequently analyzed. 

 
Eight subjects (six male and two female) evaluated the 

fall scenarios. The average age of subjects was 26.9 years 
with a standard deviation of 6.7. The average body weight 
of the subjects was 162.3 lb. with a standard deviation of 
30.5. A total of 87 fall and 48 no-fall events were recorded. 
A set of fall event examples are given in Figure 4. More 
than 90% of falls were detected with the trigger of upper 
and lower thresholds and the statistical switches. Each data 
collection session started with a few seconds of preparation 
(clicking the button to start recording, putting the phone into 
the pocket, and waiting for a few seconds) and was followed 
by the execution of the event. Exemplary data captured 
from backward, forward, and lateral fall events are shown in 
Figures 4(a), 4(b), and 4(c), respectively. Fluctuations after 
the fall were due to the bouncing from the bed mattress that 
was positioned on a carpeted floor in order to limit the im-

pact of the falls, as required by the experimental protocol 
that was approved by the IRB. These fluctuations were 
more prominent for forward and lateral falls. The steady 
portion of the data right after the fall was the long lie, where 
the subjects lie on the mattress for a few seconds. Figure 4
(d) shows the data for bending, where a decline in the mov-
ing average occurs that triggers the pit threshold. However, 
the impact threshold was not exceeded. Similarly, sitting 
down did not trigger the impact threshold, even though the 
pit threshold was set; see Figure 4(e). The walking event 
had the periodical dips and hills that could be associated 
with pit threshold and impact switched; see Figure 4(f). 
However, since the impact was not high enough or the mov-
ing average did not go below a certain threshold, fall events 
were not recorded. 

Figure 4. A Representative Fall Event 

 
A summary of the success rate for the tests is given in 

Table 1. The overall sensitivity was calculated as 92% and 
the specificity was 100%. Sensitivity is defined as the abil-
ity to detect a fall, whereas specificity is defined as only 
detecting a fall [12], [28]. Therefore, specificity can only be 
calculated for no-fall events. On the other hand, sensitivity 
was calculated for actual fall events. Table 1 shows “N/D” 
for undefined cases. 
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Table 1. Success Rates 

While being able to avoid false positives would be the 
result of using a smartphone during activities of a person’s 
daily life, some falls were not detected by the algorithm. 
Overall, a contributing factor was the mattress that was re-
quired by the IRB to limit the impact of the experimental 
falls for the participants. While softening the fall for the 
volunteers, it also limited the maximum values that were 
obtained in the data gathering process from the accelerome-
ter. Secondly, the volunteers themselves likely altered their 
“natural” fall behavior through event anticipation and ap-
propriate precautious activity as well as for conducting mul-
tiple experiments in a single setting. For the lateral fall sce-
narios, for example the lowest detection rate, the volunteers 
likely cushioned their fall before turning to their sides, 
which could have had a significant impact on the sensor 
readings obtained. It is highly anticipated that employing 
the algorithm in future studies with more volunteers will 
significantly increase the already high success rate. 

 

Conclusions and Future Works 
 

In this study, a new fall detection algorithm was proposed 
that was implemented on an Android-based smartphone. 
Through various experiments, the algorithm was found to 
result in a sensitivity of 92% and a specificity of 100%. The 
algorithm was, in turn, very successful at not detecting false 
falls that could be derived from daily activities (such as sit-
ting, walking, and bending). On the other hand, a high rate 
of success was achieved in the detection of real falls, while 
undetected falls were only the result of experimental limita-
tions. As smart sensors and phone-enabled technologies are 
on the rise, the authors believe that this proposed work is 
timely and relevant [31-33]. The authors also believe that 
the algorithm presented will contribute to the use of 
smartphones as medical monitoring devices, specifically fall 
events. Current commercial devices are either very expen-
sive or require a response from the patient in order to invoke 
the alarm system. Although a simple button can serve this 

purpose, in the case of a user of these systems losing con-
sciousness or not being willing to seek help, the system will 
not be functional. Therefore, having a smartphone in their 
pockets can continuously monitor their movements and the 
response method can easily be adjusted on the phone. Re-
sponse methods considered were to call 911 automatically, 
send a text, email, or initiate a phone call to either a local 
health unit or a relative. 

 
Due to ethical and practical restrictions, the experiment 

was limited to a younger population than ultimately target-
ed. The distribution of the developed algorithm in the form 
of an Android App will be part of future works. The distrib-
uted App will afford crowd-source human subject trials 
without restrictions and provide further data for refinements 
of the algorithm. Other future works are directed to the eval-
uation of different phone positions and daily life scenarios, 
which could trigger a detected fall. 
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