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A new class of porphyrin containing hyperbranched poly-
mers has been prepared via proton-transfer polymerisation
utilising an A2 + B3 approach, thus providing an accelerated
entry into the construction of branched multiporphyrin
architectures.

In recent years, significant effort has been made to prepare and
study covalently linked multiporphyrin arrays1 due to their
promising role in artificial photosynthesis.2 The incorporation
of porphyrin units into the framework of a dendrimer3 is of
special interest since the dendritic architecture allows for
maximum interactions between the chromophores, a necessary
condition for efficient energy and electron transfer processes.
However, access to such multiporphyrin compounds represents
a difficult synthetic challenge, thus only low generation
dendritic porphyrins  have been prepared to date.1,4

We report on an alternative approach to the construction of
branched multiporphyrin architectures that takes advantage of
the rapid one pot synthesis used for generating hyperbranched
polymers.5 This approach is based on our recent work in proton
transfer polymerisation6 that used an A2 + B3 route for the
preparation of hyperbranched aliphatic polyethers.7 The system
described herein is designed following similar principles. In this
case, bisphenolic porphyrin 1 serves as the A2 monomer and the
aliphatic trisepoxide 28 serves as the B3 monomer (Scheme
1).

Initiation of the polymerisation is expected to proceed via
deprotonation of the phenol by the base catalyst. This should be
followed by ring opening of an epoxide substituent by the
nucleophilic phenoxide. Regeneration of phenoxide should then
occur by an efficient proton transfer from a different phenol to
the formed secondary alkoxide.7 This process leads to a highly
branched polyether architecture incorporating multiple por-
phyrin units.9 It was envisaged that the formed polymer chain in
the ortho-position of the meso-phenyl substituents would lead to
good solubility by decreasing the porphyrin–porphyrin stacking
interactions. The metalated derivative, e.g. zinc complex, was
chosen to prevent participation of the pyrrole hydrogens in the
proton transfer event.

The asymmetric zinc porphyrin A2 monomer 1† is accessible
in gram quantities via a three step procedure in 10% overall
yield. The polymerisations employed equimolar ratios of the
monomers as a 0.2 M solution in THF at 60 °C using a catalytic
amount of base (25 mol% per phenolic group). The successful
incorporation of both monomers into the polymer backbone was
monitored by matrix assisted laser desorption ionisation time of
flight (MALDI-TOF) mass spectrometry (Fig. 1). Unfortu-
nately, ionisation of higher molecular weight material becomes
increasingly difficult by the MALDI technique. Therefore, gel
permeation chromatography (GPC)‡ was used as an additional
complementary method for MW analysis (Fig. 2). The kinetic
growth profile appeared as expected for a polycondensation
reaction (Fig. 2, inset).6,7 Upon reaching MW ~ 10 000,§ the
reaction was stopped by removing the heating source, and the
resulting polymer 3¶ was purified by precipitation into
methanol (THF–MeOH 1+50) giving rise to a fairly narrow
polydispersity (PD) of less than 2 (Fig. 2). Control over MW can
be achieved easily by variation of reaction time (typically a few

days). We reason that slow polymerisation is due to the high
dilution conditions made necessary by the relatively low

Scheme 1 Reagents and conditions: i, pyrrole, EtCO2H, PhNO2, 120 °C; ii,
BBr3, CH2Cl2, 0 °C to room temp.; iii, Zn(OAc)2, CHCl3–MeOH, reflux; iv,
KOBut, THF, heat.

Fig. 1 MALDI-TOF mass spectrum of the polymerisation mixture showing
the incorporation of the porphyrin (P) and epoxide (E) monomers. The
peaks at lower (higher) mass of each major peak correspond to the loss
(addition) of one epoxide unit.
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solubility of 1. Higher temperatures result in faster polymer
growth, as well as increased PD of the polymers. The polymers
were obtained as dark purple powders in 50–60% yields after
precipitation, and showed good solubility in a variety of
solvents such as CHCl3, THF and DMSO.

Initial photophysical studies revealed only slight changes in
the absorption behaviour of polymer 3 compared to monomer 1,
suggesting rather weak electronic coupling of the porphyrin
units (Fig. 3).10 However, a 30% decrease in fluorescence
intensity of 3 compared to 1 was observed (Fig. 3, inset). This
finding is attributed to an enhanced self-quenching of the
chromophores within the macromolecule, presumably by
cofacial interactions.

In summary, we have developed for the first time hyper-
branched polymers incorporating porphyrin chromophores. The
described methodology allows for the rapid synthesis of
multiporphyrin architectures facilitated by the ease of purifica-
tion, e.g. no chromatography, and it should be of general
applicability. Such polymers could serve as interesting materi-
als for a variety of photophysical and electrochemical studies as
well as for the construction of optoelectronic devices.11

Furthermore, structural modification of these polymers by
transmetalation or derivatisation of residual functional groups
should provide a diverse set of new materials.

Financial support from the AFOSR-MURI program and the
National Science Foundation (NSF-DMR 9816166) is acknowl-
edged with thanks.
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kD.
¶ Selected data for 3: GPC‡ (THF): Mw = 9900, Mn = 5100, PDI = 1.9;
dH(300 MHz, DMSO-d6, 25 °C) 8.72 (br s, b-H), 8.13 (br s, Ph-H), 7.72 (br
s, Ph-H + 6A-H), 6.94 (br s, 3A- and 5A-H), 1.2–4.3 (very br, CH2CHOH,
CH2CHOH and CH2CHOH), 0.9 (br s, CH3); lmax(CHCl3)/nm (e/dm3

mol21 cm21) 425, 557, 597; lem(CHCl3)/nm (lexc = 420 nm) 606, 655.

1 For larger branched covalent multiporphyrin arrays, see: D. L. Officer,
A. K. Burrell and D. C. W. Reid, Chem. Commun., 1996, 1657; C. C.
Mak, N. Bampos and J. K. M. Sanders, Angew. Chem., Int. Ed., 1998,
37, 3020; C. C. Mak, D. Pomeranc, M. Montalti, L. Prodi and J. K. M.
Sanders, Chem. Commun., 1999, 1083; C. C. Mak, N. Bampos and
J. K. M. Sanders, Chem. Commun., 1999, 1085; A. Nakano, A. Osuka,
I. Yamasaki, T. Yamasaki and Y. Nishimura, Angew. Chem., Int. Ed.,
1998, 37, 3023; H. A. M. Biemans, A. E. Rowan, A. Verhoeven, P.
Vanoppen, L. Latterini, J. Foekema, A. P. H. J. Schenning, E. W.
Meijer, F. C. de Schryver and R. J. M. Nolte, J. Am. Chem. Soc., 1998,
120, 11 054; R. Dagani, Chem. Eng. News, 1999, (11/1), 9.

2 For a recent discussion, see: M. Freemantle, Chem. Eng. News, 1998,
(10/26), 37; 1999, (11/1), 27.

3 For a comprehensive review on dendrimers, consult: G. R. Newkome,
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Fig. 2 GPC trace of polymer 3 after precipitation into MeOH (MW = 9900;
PDI = 1.9). The inset shows polymer growth as a function of time for a
polymerisation run at 60 °C.

Fig. 3 UV–VIS absorption spectra of monomer 1 (—) and polymer 3 (…)
in CHCl3. The inset shows the corrected fluorescence spectra in CHCl3 (lexc

= 420 nm).
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