Skip to main content
Presentation
On the Relationship between Parsimonious Covering and Boolean Minimization
Proceedings of the IEEE 1991 National Aerospace and Electronics Conference
  • Venu Dasigi
  • Krishnaprasad Thirunarayan, Wright State University - Main Campus
Document Type
Conference Proceeding
Publication Date
5-1-1991
Abstract
Minimization of Boolean switching functions is a basic problem in the design of logic circuits. The designer first comes up with a switching function expressed in terms of several binary input variables that satisfies the desired functionality, and then attempts to minimize the function as a sum of products or product of sums. It turns out that a sum of products form of a switching function that has no redundancy is a union of prime implicants of the function. In this paper we would like to explicate some of the relationships of the boolean minimization problem to a formalization of abductive inference called parsimonious covering. Abductive inference often occurs in diagnostic problems such as finding the causes of circuit faults [Reiter, 87] or determining the diseases causing the symptoms reported by a patient [Peng and Reggia, 90]. Parsimonious covering involves covering all observed facts by means of a parsimonious set of explanations that can account for the observations. The relationship of parsimonious covering to boolean minimization has been noted by the developers of the theory; we intend to pursue a detailed mapping here.
Comments

Presented at the IEEE National Aerospace and Electronics Conference, Dayton, OH, May 20-24, 1991.

Posted with permission from IEEE.

DOI
10.1109/NAECON.1991.165906
Citation Information
Venu Dasigi and Krishnaprasad Thirunarayan. "On the Relationship between Parsimonious Covering and Boolean Minimization" Proceedings of the IEEE 1991 National Aerospace and Electronics Conference Vol. 3 (1991) p. 1164 - 1169 ISSN: 0780300858
Available at: http://works.bepress.com/tk_prasad/39/