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BIFURCATION OF SOLUTIONS OF SEPARABLE
PARAMETERIZED EQUATIONS INTO LINES

YUN-QIU SHEN, TJALLING J. YPMA

Abstract. Many applications give rise to separable parameterized equations

of the form A(y, µ)z + b(y, µ) = 0, where y ∈ Rn, z ∈ RN and the parameter
µ ∈ R; here A(y, µ) is an (N + n)×N matrix and b(y, µ) ∈ RN+n. Under the

assumption that A(y, µ) has full rank we showed in [21] that bifurcation points

can be located by solving a reduced equation of the form f(y, µ) = 0. In this
paper we extend that method to the case that A(y, µ) has rank deficiency one

at the bifurcation point. At such a point the solution curve (y, µ, z) branches

into infinitely many additional solutions, which form a straight line. A numer-
ical method for reducing the problem to a smaller space and locating such a

bifurcation point is given. Applications to equilibrium solutions of nonlinear

ordinary equations and solutions of discretized partial differential equations
are provided.

1. Introduction

Equilibrium solutions of certain nonlinear ordinary differential equations with
parameters, and numerical solutions of certain boundary value problems, give rise
to separable nonlinear parameterized equations of the form

A(y, µ)z + b(y, µ) = 0 (1.1)

where y ∈ Rn, z ∈ RN and the parameter µ ∈ R. Here A(y, µ) is an (N + n) ×N
matrix and b(y, µ) ∈ RN+n; in practice usually N � n. We refer to the recent
survey [5] for numerous examples, references, and variants of the Golub-Pereyra
variable projection method for the solution of separable equations. Further ref-
erences to related material appear in [3, 4, 8, 9, 10, 17, 24]. Recently in [21] we
extended a variant of the Golub-Pereyra variable projection method [17, 24] to (1.1)
for bifurcation problems specified by a parameter µ. Under the assumption that
A(y, µ) has full rank we show there that curve following and bifurcation at a point
(y, µ, z) can be located within a smaller space, for (y, µ) only, by solving a reduced
equation of the form f(y, µ) = 0.
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In this paper we extend both the technique and the analysis of [21] to the case
when A(y, µ) has rank deficiency one at the bifurcation point (y∗, µ∗, z∗). That
implies a line of solutions in the nullspace of A(y∗, µ∗) satisfying (1.1) through the
bifurcation point. We call this phenomenon bifurcation into a line. We show that
(1.1) can be reduced to solving only for (y, µ, w), for a variable w ∈ R defined below,
by using a variant of the matrix bordering techniques of [1, 7, 13, 14, 15, 16, 19]
and an extension of the algorithms of [18, 20] to eliminate N − 1 components of
the linear variable z. We show that bifurcation phenomena, including the line of
solutions, are preserved in this smaller space and that the relevant points can be
located by solving a smaller separable nonlinear system of the form

f(y, µ, w) ≡ α(y, µ)w + β(y, µ) = 0, (1.2)

where w ∈ R and α(y, µ), β(y, µ) ∈ Rn+1. If N is much larger than n the reduction
of dimension from N + n+ 1 to n+ 2 is significant. The precise form of f(y, µ, w)
and how to solve (1.2) are detailed below.

In the next section we present the theoretical basis of our method. A reduction
from (1.1) to (1.2) is presented and the preservation of the bifurcation is proved.
In Section 3 we derive expressions for the derivatives involved in our method. We
derive an extended system for the location of the bifurcation point in the smaller
dimensional space in Section 4. In the last section we give some numerical examples
to illustrate the method.

2. Analysis

Write
f̃(y, µ, z) ≡ A(y, µ)z + b(y, µ) = 0 (2.1)

where y ∈ Rn, z ∈ RN , µ ∈ R and A(y, µ) is an (N + n) ×N matrix and b(y, µ) ∈
RN+n. Assume both A and b are C2 − Lipschitzian in y and µ; thus f̃(y, µ, z) is
also C2-Lipschitzian in y and µ. Suppose a curve following technique leads to a
bifurcation point (y∗, µ∗, z∗) of the solution set where the column rank deficiency
of A(y∗, µ∗) is one. At this point bifurcation into a straight line in the nullspace of
A(y∗, µ∗) and other curves occurs.

The singular value decomposition of A(y, µ) at any point (y, µ) is defined to be
[6, 23]

A(y, µ) = UΣV T ≡ [u1, . . . , uN+n]
[
diag(σ1, . . . , σN )

0n×N

]
[v1, . . . , vN ]T (2.2)

where {u1, . . . , uN+n} and {v1, . . . , vN} form orthonormal bases for RN+n and RN

respectively and the singular values satisfy σ1 ≥ · · · ≥ σN ≥ 0. The rank deficiency
one at (y∗, µ∗) implies that the corresponding singular values satisfy σ∗N−1 6= 0 and
σ∗N = 0. If (ȳ, µ̄) is near (y∗, µ∗) then the corresponding singular values satisfy
σ̄N−1 6= 0 and σ̄N is small by continuity of the singular values.

For a given (fixed) (ȳ, µ̄) near (y∗, µ∗) define the N -vector l and the (N + n)×
(n+ 1) matrix R from the singular value decomposition of A(ȳ, µ̄) = Ū Σ̄V̄ T by

l ≡ v̄N , R ≡ [ūN , . . . , ūN+n]. (2.3)

Let M(y, µ) be the (N + n+ 1)× (N + n+ 1) bordered matrix

M(y, µ) ≡
[
A(y, µ) R

lT O

]
. (2.4)
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Note that in (2.4) and henceforth the vector l and the matrix R are fixed; they are
determined by the selected point (ȳ, µ̄); only the term A(y, µ) varies with y and µ.

Lemma 2.1. The matrix M(y, µ) is nonsingular for all (y, µ) in a small neighbor-
hood of (y∗, µ∗).

Proof. Let ȳ, µ̄ be as above. Observe that since σ̄N−1 6= 0

M(ȳ, µ̄) =
[
Ū 0
0 1

]
diag(σ̄1, . . . , σ̄N−1) 0 0

0
[
σ̄N

0

]
In+1

0 1 0

[
V̄ T 0
0 In+1

]

is nonsingular. From the Neumann Lemma [12] M(y, µ) is nonsingular provided
‖M(ȳ, µ̄)−1[M(ȳ, µ̄)−M(y, µ)]‖ < 1, and since

‖M(ȳ, µ̄)−M(y, µ)‖ =
∥∥∥ [
A(ȳ, µ̄)−A(y, µ) 0

0 0

] ∥∥∥
this holds for all (y, µ) and (ȳ, µ̄) sufficiently near (y∗, µ∗) by continuity of A(y, µ).

�

Assume z satisfies (1.1). Define w = lT z ∈ R and z̃ = z − wl . Then[
A(y, µ)

lT

]
z +

[
b(y, µ)
−w

]
=

[
0
0

]
=

[
A(y, µ)

lT

]
(z̃ + wl) +

[
b(y, µ)
−w

]
. (2.5)

Denote

Ã(y, µ) =
[
A(y, µ)

lT

]
, b̃(y, µ, w) =

[
b(y, µ)
−w

]
. (2.6)

By Lemma 2.1 the first N columns of M(y, µ) form the full rank matrix Ã(y, µ).
Thus (2.5) has the unique least squares solution z̃ + wl = −[Ã(y, µ)]+b̃(y, µ, w),
where [Ã(y, µ)]+ denotes the pseudo-inverse of Ã(y, µ). Extending the algorithm of
[17, 24] we have the following result.

Theorem 2.2. (y, µ, w, z̃) is a solution of (2.5) if and only if it satisfies

f(y, µ, w) ≡ CT (y, µ)̃b(y, µ, w) = 0, z̃ = −wl − [Ã(y, µ)]+b̃(y, µ, w), (2.7)

where CT (y, µ) is the transpose of the (N+n+1)×(n+1) matrix C(y, µ) satisfying

CT (y, µ)M(y, µ) = CT (y, µ)
[
A(y, µ) R

lT 0

]
= −[0(n+1)×N , In+1]. (2.8)

Proof. (=⇒) Assume (2.5) holds. Multiply both sides of (2.5) by CT (y, µ) and use
(2.8) to give the first part of (2.7). Since z = z̃ + wl is a solution of (2.5) for the
given (y, µ, w) it is the unique least squares solution of a linear equation with a full
rank coefficient matrix, so we have the second part of (2.7).

(⇐=) Assume (2.7) holds. From (2.8) we have

0 = CT (y, µ)̃b(y, µ, w) = −[0, In+1]M−1(y, µ)̃b(y, µ, w)
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which implies

b̃(y, µ, w) = M(y, µ)
[
IN 0
0 In+1

]
M−1(y, µ)̃b(y, µ, w)

= M(y, µ)
[
[IN , 0]M−1(y, µ)̃b(y, µ, w)

0

]
= Ã(y, µ)[IN , 0]M−1(y, µ)̃b(y, µ, w).

(2.9)

We then obtain, using (2.7) and (2.9),

Ã(y, µ)(z̃ + wl) + b̃(y, µ, w)

= Ã(y, µ)
(
−Ã+(y, µ)̃b(y, µ, w)

)
+ b̃(y, µ, w)

= [IN+n+1 − Ã(y, µ)Ã+(y, µ)]Ã(y, µ)[IN , 0]M−1(y, µ)̃b(y, µ, w)

= [Ã(y, µ)− Ã(y, µ)Ã+(y, µ)Ã(y, µ)][IN , 0]M−1(y, µ)̃b(y, µ, w) = 0

as claimed. �

We only need to solve the first equation of (2.7) for (y, µ, w) since it preserves
bifurcations of (2.5) by the following theorem.

Theorem 2.3. For any fixed parameter µ, the points (y, µ, w) and (ȳ, µ, w̄) are two
distinct solutions of the first part of (2.7) if and only if (y, µ, z) and (ȳ, µ, z̄) are
two distinct solutions of (2.5) with z = z̃ + wl and z̄ = ˜̄z + w̄l , where z̃ and ˜̄z are
determined by the second part of (2.7) respectively.

Proof. (=⇒) If not, then (y, µ, w) 6= (ȳ, µ, w̄) but (y, µ, z) = (ȳ, µ, z̄) which implies
that y = ȳ, z = z̄ and thus w 6= w̄. Thus 0 = z − z̄ = (z̃ − ˜̄z) + (w − w̄)l by the
definition of z and z̄. From Theorem 2.2, the fact that (y, µ, z) satisfies the first
equation of (2.7) and z̃ satisfies the second equation of (2.7) implies that (y, µ, w, z̃)
satisfies (2.5); similarly so does (ȳ, µ, w̄, ˜̄z). Therefore,

Ã(y, µ)(z̃ + wl) + b̃(y, µ, w) = 0 = Ã(ȳ, µ)(˜̄z + w̄l) + b̃(ȳ, µ, w̄). (2.10)

Subtracting the left side of the equation from the right side and using y = ȳ and
z = z̄ we have w = w̄, contradicting w 6= w̄. So (y, µ, z) 6= (ȳ, µ, z̄).

(⇐=) If not, then (y, µ, z) 6= (ȳ, µ, z̄) but (y, µ, w) = (ȳ, µ, w̄) which implies
that w = w̄, y = ȳ but z 6= z̄. By the second equation of (2.7) z̃ = ˜̄z. Thus
z = z̃ + wl = ˜̄z + w̄l = z̄, which is a contradiction. So (y, µ, w) 6= (ȳ, µ, w̄). �

Write

CT (y, µ) ≡ [(PT (y, µ))(n+1)×(N+n), (qT (y, µ))n+1]. (2.11)

Then the reduced equation f(y, µ, w) = 0 of (2.7) becomes

f(y, µ, w) ≡ −qT (y, µ)w + PT (y, µ)b(y, µ) (2.12)

which is of the form of a separable equation in a smaller space. Essentially,
the N -vector z has been has been replaced by the scalar w while the matrix
(A(y, µ))(N+n)×N is replaced by the (n+ 1)-vector −qT (y, µ).

Finally we have the following results showing preservation of the line of solutions.
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Theorem 2.4. Let (y∗, µ∗, z∗) be a bifurcation point of (2.1) with A(y∗, µ∗) having
rank deficiency one and let A(y, µ) have full rank at every solution point (y, µ, z)
of (2.1) in a small neighborhood of (y∗, µ∗, z∗) with (y, µ) 6= (y∗, µ∗). Let (ŷ, µ̂, ẑ)
be a solution point of (2.1) in this neighborhood. Then (ŷ, µ̂) = (y∗, µ∗) if and only
if qT (ŷ, µ̂) = 0 ∈ Rn+1.

Proof. First note from (2.8) that C(y, µ) has full rank n+ 1 since M(y, µ) is non-
singular for all (y, µ) in a neighborhood of (y∗, µ∗).

(=⇒) From (2.8) the rows of CT (y∗, µ∗) = [PT (y∗, µ∗), qT (y∗, µ∗)] form a basis
for the left nullspace of Ã(y∗, µ∗), which is (n+ 1)-dimensional because the matrix
M(y∗, µ∗) of (2.4) has full rank. Since A(y∗, µ∗) has column rank deficiency one,
the matrix A(y∗, µ∗) also has an (n + 1)-dimensional left nullspace. Suppose its
basis consists of the vectors ϕ1, . . . , ϕn+1, and denote by Φ the matrix with these
vectors as columns. Then the rows of [ΦT , 0(n+1)×1] also form a basis for the left
nullspace of Ã(y∗, µ∗), so [PT (y∗, µ∗), qT (y∗, µ∗)] = G[ΦT , 0] for some nonsingular
(n+ 1)× (n+ 1) matrix G, which implies that

PT (y∗, µ∗) = GΦT , qT (y∗, µ∗) = 0. (2.13)

(⇐=) The n+1 rows of CT (ŷ, µ̂) = [PT (ŷ, µ̂), 0] form a basis of the left nullspace
of Ã(ŷ, µ̂), which implies that the n + 1 rows of PT (ŷ, µ̂) form a basis for the left
nullspace of the (N + n)×N matrix A(ŷ, µ̂). Thus A(ŷ, µ̂) has rank deficiency one
which implies that (ŷ, µ̂) = (y∗, µ∗). �

Theorem 2.5. (a) If (y∗, µ∗, z∗) is a bifurcation point of (1.1) which bifurcates
solutions into a straight line then (y∗, µ∗, w∗) with w∗ = lT z∗ is a bifurcation point
of (2.12) which bifurcates solutions into a straight line;

(b) If (y∗, µ∗, w∗) is a bifurcation point of (2.12) which bifurcates solutions into
a straight line then (y∗, µ∗, z∗) with z∗ = −[Ã(y∗, µ∗)]+b̃(y∗, µ∗, w∗) is a bifurcation
point of (1.1) which bifurcates solutions into a straight line.

Proof. From Theorems 2.2 and 2.3 (y∗, µ∗, z∗) is a bifurcation point of (1.1) if only
if (y∗, µ∗, w∗) is a bifurcation point of (2.12). From Theorem 2.4 there is a line of
solutions of (1.1) through (y∗, µ∗, z∗) if and only if there is a line of solutions of
(2.12) through (y∗, µ∗, w∗). �

3. Computation

We shall need derivatives of f(y, µ, w) to solve (2.12). Denote the vectors f ′j ≡
∂f
∂yj

for j = 1, . . . , n, f ′n+1 ≡
∂f
∂µ and f ′n+2 ≡

∂f
∂w . We use similar notation for the

vectors of second partial derivatives f ′′j,k = (f ′j)
′
k of f with respect to the jth and

kth independent variables of (y, µ, w), and also for the derivatives of other functions
of (y, µ, w).

Theorem 3.1. Let ζ(y, µ, w) ∈ RN and ψ(y, µ, w) ∈ Rn+1 satisfy[
A(y, µ) R

lT 0

] [
ζ(y, µ, w)
ψ(y, µ, w)

]
= −

[
b(y, µ)
−w

]
. (3.1)

Then for j, k = 1, . . . , n+ 1, we have
(a)

f(y, µ, w) = ψ(y, µ, w) (3.2)
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(b) f ′j = ψ′j = PT (y, µ)[A′jζ(y, µ, w) + b′j ],

ζ ′j = −[IN , 0N×(n+1)]M−1(y, µ)
[
A′jζ(y, µ, w) + b′j

0

]
; (3.3)

(c) f ′n+2 = ψ′n+2 = −qT (y, µ),

ζ ′n+2 = [IN , 0]M−1(y, µ)eN+n+1; (3.4)

(d)

f ′′j,k = ψ′′j,k = PT (y, µ)[A′′j,kζ(y, µ, w) +A′jζ
′
k +A′kζ

′
j + b′′j,k]; (3.5)

(e) f ′′n+2,j = ψ′′n+2,j = PT (y, µ)A′jζ
′
n+2,

f ′′j,n+2 = ψ′′j,n+2 = PT (y, µ)A′jζ
′
n+2; (3.6)

(f)
f ′′n+2,n+2 = ψ′′n+2,n+2 = 0 ∈ Rn+1. (3.7)

where eN+n+1 is the (N + n+ 1)-th unit vector of the standard basis in RN+n+1.

Proof. (a) Using (2.7), (2.8) and (3.1) we obtain

f(y, µ, w) = CT (y, µ)̃b(y, µ, w) = −[0, In+1]M−1(y, µ)̃b(y, µ, w) = ψ(y, µ, w).
(3.8)

(b) Differentiating both sides of (3.1) with respect to yj or µ, we have[
A′j 0
0 0

] [
ζ(y, µ, w)
ψ(y, µ, w)

]
+M(y, µ)

[
ζ ′j
ψ′j

]
= −

[
b′j
0

]
(3.9)

which implies [
ζ ′j
ψ′j

]
= −M−1(y, µ)

[
A′jζ(y, µ, w) + b′j

0

]
.

Using (2.8), (2.11) and (3.2) we thus have

f ′j = ψ′j = −[0, In+1]M−1(y, µ)
[
A′jζ(y, µ, w) + b′j

0

]
= PT (y, µ)[A′jζ(y, µ, w) + b′j ]

and

ζ ′j = −[IN , 0]M−1(y, µ)
[
A′jζ(y, µ, w) + b′j

0

]
.

(c) Differentiating both sides of (3.1) with respect to w gives

M(y, µ)
[
ζ ′n+2

ψ′n+2

]
= eN+n+1 (3.10)

which with (2.8), (2.11) and (3.2) gives

f ′n+2 = ψ′n+2 = [0, In+1]M−1(y, µ)eN+n+1 = −CT (y, µ)eN+n+1 = −qT (y, µ)

and ζ ′n+2 = [IN , 0]M−1(y, µ)eN+n+1.
(d) Differentiating both sides of (3.9) with respect to yk or µ with (2.8), (2.11)

and (3.2) we obtain (3.5).
(e) Differentiating both sides of (3.10) with respect to yj or µ with (2.8), (2.11)

and (3.2) we obtain the first part of (3.6). Direct differentiation of both sides of
the first part of (3.3) with respect to w gives the second part of (3.6)
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(f) Differentiating both sides of the first part of (3.4) with respect to w we obtain
(3.7). �

Let (y∗, µ∗, w∗) be a bifurcation solution of (2.12). By (3.2) ψ(y∗, µ∗, w∗) =
f(y∗, µ∗, w∗) = 0. Thus (2.5) and (3.1) imply that

z∗ = −[Ã(y∗, µ∗)]+b̃(y∗, µ∗, w∗)

= ζ(y∗, µ∗, w∗)

= −[IN , 0N×(n+1)]M−1(y∗, µ∗)̃b(y∗, µ∗, w∗)

(3.11)

by the uniqueness of the linear least squares solution for the full rank matrix
Ã(y∗, µ∗). This expression is used to obtain z∗, without using the pseudo-inverse,
after y∗, µ∗ and w∗ have been found.

From Theorem 3.1 we obtain the (n+ 1)× (n+ 2) Jacobian matrix

f ′(y, µ, w) = [PT (y, µ)K(y, µ, w),−qT (y, µ)] = CT (y, µ)
[
K(y, µ, w) 0

0 −1

]
(3.12)

where the (N + n)× (n+ 1) matrix

K(y, µ, w) ≡ [A′1ζ(y, µ, w), . . . , A′n+1ζ(y, µ, w)] + b′(y, µ) (3.13)

and P (y, µ) and q(y, µ) are defined in (2.12).
Since (y∗, µ∗, w∗) is a bifurcation point of (2.12), f ′(y∗, µ∗, w∗) has a rank defi-

ciency d ≥ 1. To solve the equation (2.12) we use the technique of [15, 16, 19, 21].
Let the singular value decomposition of the (n+ 1)× (n+ 2) matrix f ′(ȳ, µ̄, w̄)

be
f ′(ȳ, µ̄, w̄) = Ũ Σ̃Ṽ T

≡ [ũ1, . . . , ũn+1][diag(σ̃1, . . . , σ̃n+1), 0(n+1)×1][ṽ1, . . . , ṽn+2]T .
(3.14)

Let the (n+ 2)× (d+ 1) matrix L̃ and the (n+ 1)× d matrix R̃ be

L̃ = [ṽn+2−d, . . . , ṽn+2], R̃ = [ũn+2−d, . . . , ũn+1]. (3.15)

An argument similar to that used in Lemma 2.1 leads to

Lemma 3.2. The (n+ d+ 2)× (n+ d+ 2) bordered matrix

M̃(y, µ, w) ≡

[
f ′(y, µ, w) R̃

L̃T 0

]
(3.16)

is nonsingular for all (y, µ, w) in a small neighborhood of (y∗, µ∗, w∗).

As in [16, 19] an extended system of n + d + 2 equations in n + d + 2 variables
for (2.12) is

F (y, µ, w, λ) =
[
f(y, µ, w) + R̃λ

g(y, µ, w)

]
=

[
0
0

]
, (3.17)

with the Jacobian matrix

F ′(y, µ, w, λ) =
[

f ′(y, µ, w) R̃

−ηT (y, µ, w)
∑n+1

k=1 [ξk(y, µ, w)∇2fk(y, µ, w)] 0

]
. (3.18)

Here λ ∈ Rd is a Lagrange-type auxiliary vector, ξ(y, µ, w) ∈ Rn+1 and g(y, µ, w) ∈
Rd+1 satisfy

M̃T (y, µ, w)
[
ξ(y, µ, w)
g(y, µ, w)

]
=

[
0
γ

]
(3.19)
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with a randomly selected nonzero vector γ ∈ Rd, and η(y, µ, w) ∈ R(n+1)×(d+1)

satisfies

η(y, µ, w) =
[
In+1 0

]
M̃−1(y, µ, w)

[
0

Id+1

]
. (3.20)

It has been proved that under certain conditions for almost every choice of γ the
matrix F ′(y∗, µ∗, w∗, 0) is nonsingular (see [16, 19] for details). Thus Newton’s
method can be used to solve (3.17) with quadratic convergence. The solution of
(2.12) corresponds to a solution of (3.17) with λ∗ = 0.

Convergence of Newton’s method depends on the initial point being near the
solution. We can choose a good initial point by using a curve following technique on
a solution branch of (2.12) connecting to the bifurcation point [2, 21]. That starting
point corresponds to a starting point of (3.17) with λ(0) = 0. The correct rank
deficiency d can be obtained by looking for small singular values σ̃n+2−d, . . . , σ̃n+1

in (3.14), since the singular values are continuous and the corresponding values at
(y∗, µ∗, w∗) are zero. If the rank deficiency d is under-estimated then convergence
becomes linear, while if the rank deficiency d is over-estimated then the computed
solution may not be the desired solution with λ∗ = 0.

4. Examples

We present two examples to illustrate our method.

Example 4.1.

d

dt

z1y
z2

 =

−µ 0
−1 µy
0 −µ

[
z1
z2

]
+

 y
−µy

µ− µy2

 . (4.1)

This simple example with N = 2 and n = 1 is a case of the Sherman system
[22] with one parameter µ while the other two parameters are fixed. The system is
derived from a nuclear spin generator; for more details see [11]. There is one equilib-
rium solution y = 0, z1 = 0, z2 = 1 for any value of µ. At the point (ȳ, µ̄, z̄1, z̄2) =
(0.02, 0.02, 0.02, 1.02, ) near the bifurcation point (y∗, µ∗, z∗1 , z

∗
2) = (0, 0, 0, 1) the

singular value decomposition of A(ȳ, µ̄) is−0.0200 0.0004 −0.9998
−0.9998 0.0000 0.0200
0.0000 1.0000 0.0004

1.0002 0
0 0.0200
0 0

[
1.0000 −0.0004
−0.0004 −1.0000

]T

. (4.2)

A(y∗, µ∗) has rank deficiency one as indicated by the singular values of A(ȳ, µ̄) since
σ̄2 = 0.0200 is very small relative to σ̄1 = 1.0002. This gives

l =
[
−0.0004
−1.0000

]
, R =

0.0004 −0.9998
0.0000 0.0200
1.0000 0.0004

 (4.3)

and w̄ = lT z̄ = −1.0200. The singular value decomposition of f ′(ȳ, µ̄, w̄) is

[
0.0004 1.0000
1.0000 −0.0004

] [
0.9998 0 0

0 0.0286 0

] 1.0000 0.0003 0.0003
−0.0004 0.7142 0.6999
0.0000 −0.6999 0.7142

T
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which suggests that the rank deficiency of f ′(y∗, µ∗, w∗) is d = 1 since σ̃2 = 0.0286
is very small relative to σ̃1 = 0.9998. Hence

L̃ =

 0.0003 0.003
0.7142 0.6999
−0.6999 0.7142

 , R̃ =
[

1.0000
−0.0004

]
.

We choose γ = 0.6742 at random. We list in Table 1 the data beginning with
(y(0), µ(0), w(0), λ(0)) = (0.02, 0.02,−1.02, 0) and using

‖d(k)‖2 = ‖(y(k+1), µ(k+1), w(k+1), λ(k+1))− (y(k), µ(k), w(k), λ(k))‖2. (4.4)

Table 1. Newton iterations for computing a bifurcation point in
Example 4.1

k y(k) µ(k) w(k) λ(k) ‖d(k)‖2
0 2.0000e-02 2.0000e-02 -1.0200e+00 0.0000e+00 3.4423e-02
1 -8.1505e-06 -6.2170e-09 -1.0004e+00 4.0814e-04 5.7221e-04
2 -2.9878e-15 -8.4432e-19 -1.0000e+00 -2.4929e-12 1.3296e-10
3 0.0000e+00 -4.7698e-26 -1.0000e+00 0.0000e+00 ————

The last line of the table is an approximation of (y∗, µ∗, w∗, λ∗); using (3.11)
then gives z∗ ≈ (0.0000e+ 00, 1.0000e+ 00)T .

Example 4.2. Let (u, v) = (u(t, x), v(t)) be a solution of the system

∂u

∂t
= µu+

∂2u

∂x2
− c1uv,

dv

dt
= (µ− µ0)v − c2v

2 + c3v

∫ 1

0

u(t, x)dx,

x ∈ (0, 1), u(t, 0) = u(t, 1) = 0
(4.5)

where c1, c2 and c3 are positive constants.

Let h = 1/(N + 1), where N is an integer. Denote the numerical approxima-
tions of the steady state solution u(t, x) at the interior points xj = jh by uj , j =
1, 2, . . . , N . Using the central difference scheme uxx ≈ (uj+1 + uj−1 − 2uj)/h2, the
trapezoidal rule for the integral, and denoting z = [u1, . . . , uN ]T and y = v we ob-
tain the following separable system for the steady state solutions of the differential
equations: [

E(y, µ)
B(y)

]
z +

[
0N×1

(µ− µ0)y − c2y
2

]
= 0, (4.6)

where B(y) = c3hy[1, . . . , 1] and the N ×N matrix

E(y, µ) =


−2 + h2(µ− c1y) 1

1 −2 + h2(µ− c1y)
. . .

. . . . . . 1
1 −2 + h2(µ− c1y)

 .
(4.7)

The matrix A(y∗, µ∗) has rank deficiency one when (y∗, µ∗) = (0, µ0) for µ0 =
4(N + 1)2sin2(π/(2N + 2)), as may be seen by the fact that Null(E(0, µ0)) has
dimension one. The point (y∗, µ∗, z∗) = (0, µ0, 0) is a bifurcation point.
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Equation (4.6) for (y, µ, z) ∈ RN+2 reduces to a system of the form (2.12) in
(y, µ, w) ∈ R3. As a numerical example we choose N = 19, so h = 0.05 and
µ0 = 9.84932752388982. We choose c1 = c2 = c3 = 1. Suppose we know
a point (ȳ, µ̄, z̄) = (0.001, 9.848, (0.0002, . . . , 0.0002)) near the bifurcation point
(y∗, µ∗, z∗) = (0, µ0, 0). The 19 singular values of A(ȳ, µ̄) are

3.9507, 3.8774, . . . , 0.5612, 0.3573, 0.1934, 0.0733, 0.0002.

The last number drops abruptly, which suggests that A(y∗, µ∗) has rank deficiency
one. We obtain w̄ = 8.0361×10−4 from w̄ = lT z̄. The singular value decomposition
of f ′(ȳ, µ̄, w̄) gives two singular values σ̃1 = 0.0033, σ̃2 = 0.0000 which implies
d = 2. Thus λ(0) = 0 ∈ R2. We randomly choose γ = (0.3721, 0.6843)T . Table
2 gives data for three iterations and shows quadratic convergence. The computed
approximation z∗ satisfies ‖z∗‖2 ≈ 2.2462 × 10−14. If the underestimate d = 1 is
used then the rate of convergence is reduced to linear as mentioned above.

Table 2. Newton iterations for computing a bifurcation point in
Example 4.2

k y(k) µ(k) w(k) λ
(k)
1 ‖d(k)‖2

0 1.0000e-03 9.8480e+00 8.0361e-04 0.0000e+00 1.8461e-03
1 -1.1537e-10 9.8493e+00 1.3079e-09 3.2664e-09 2.1661e-06
2 -2.0761e-16 9.8493e+00 -4.5227e-14 -9.2603e-22 2.3200e-14
3 -1.0311e-16 9.8493e+00 -2.2462e-14 2.8124e-30 ———–
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