Skip to main content
Article
Diffuse Damage Accumulation in the Fracture Process Zone of Human Cortical Bone Specimens and Its Influence on Fracture Toughness
Journal of Materials Science: Materials in Medicine
  • G. P. Parsamian
  • Timothy L. Norman, Cedarville University
Document Type
Article
Publication Date
9-1-2001
DOI
10.1023/A:1017916800421
Abstract

This study was concerned with the mechanics and micromechanisms of diffuse (ultrastructural) damage occurrence in human tibial cortical bone specimens subjected to tension–tension fatigue. A nondestructive technique was developed for damage assessment on the surfaces of intact compact tension specimens using laser scanning confocal microscopy. Results indicated that diffuse damage initiates as a result of fractures in the inter-canalicular regions. Subsequent growth of those microscopic flaws demonstrated multiple deflections from their paths due to 3D spatial distribution of microscopic porosities (lacunae–canalicular porosities) and the stress-concentrating effects of lacunae. Damage dominating effects in the early stages of fatigue had been verified by the observed variations of the fracture toughness due to artificially induced amounts of damage. Toughening behavior was observed as a function of diffuse damage.

Citation Information
G. P. Parsamian and Timothy L. Norman. "Diffuse Damage Accumulation in the Fracture Process Zone of Human Cortical Bone Specimens and Its Influence on Fracture Toughness" Journal of Materials Science: Materials in Medicine Vol. 12 Iss. 9 (2001) p. 779 - 783
Available at: http://works.bepress.com/timothy_norman/20/