Skip to main content
Article
Deamidation of Peptides in Aerobic Nitric Oxide Solution by a Nitrosative Pathway
Nitric Oxide
  • Li Kong
  • Joseph E. Saavedra
  • Gregory S. Buzard
  • Xia Xu
  • Brian L. Hood
  • Thomas P. Conrads
  • Timothy D. Veenstra, Cedarville University
  • Larry K. Keefer
Document Type
Article
Publication Date
3-1-2006
DOI
10.1016/j.niox.2005.09.003
PubMed ID
16249103
Abstract

Hydrolytic deamidation of asparagine (Asn) and glutamine (Gln) residues to aspartate (Asp) and glutamate (Glu), respectively, can have significant biological consequences. We hypothesize that a wholly different mechanism of deamidation might occur in the presence of aerobic nitric oxide (NO). Accordingly, we examined the deamidating ability of aerobic NO toward three model peptides, 2,4-dinitrophenyl (DNP)-Pro-Gln-Gly, Lys-Trp-Asp-Asn-Gln, and Ser-Glu-Asn-Tyr-Pro-Ile-Val, incubating them with the NO-generating compound, Et(2)N[N(O)NO]Na (DEA/NO, 30-48 mM), in aerobic, pH 7.4, buffer at 37 degrees C. DNP-Pro-Glu-Gly was detected after 2 h, while Lys-Trp-Asp-Asp-Gln, Lys-Trp-Asp-Asn-Glu, and Ser-Glu-Asp-Tyr-Pro-Ile-Val were detected within 10 min, accumulating in apparent yields of up to approximately 10%. In the latter case, tyrosine nitration was also observed, producing the expected nitrotyrosine residue. DEA/NO solutions preincubated to exhaust the NO before the peptides were added did not induce detectable deamidation. The data demonstrate that aerobic NO exposures can lead to nitrosative deamidation of peptides, a pathway that differs from the established hydrolytic deamidation mechanism in several key respects: the by-products of the former are molecular nitrogen and an acid (HONO) while that of the latter is a base (NH(3)); the nitrosative path can in principle proceed in the absence of water molecules; Asn is much more easily deamidated than Gln in the hydrolytic pathway, while the two amino acid residues were deamidated to a similar extent by exposure to NO in the presence of oxygen.

Keywords
  • Amino acids,
  • hydrogen-ion concentration,
  • macromolecular substances,
  • chemical,
  • nitric oxide,
  • peptides,
  • pharmaceutical preparations
Citation Information
Li Kong, Joseph E. Saavedra, Gregory S. Buzard, Xia Xu, et al.. "Deamidation of Peptides in Aerobic Nitric Oxide Solution by a Nitrosative Pathway" Nitric Oxide Vol. 14 Iss. 2 (2006) p. 144 - 151 ISSN: 1089-8603
Available at: http://works.bepress.com/timothy-veenstra/243/