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We explicitly construct the Schwarz-Christoffel map from a (bounded or unbounded) finitely
connected Jordan domain to a (bounded or unbounded) finitely connected polygonal domain.
The map is derived in terms of Green’s function and the harmonic measure functions of the
Jordan domain which need not be a canonical multiply connected domain.
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1. Introduction

The Schwarz-Christoffel (S-C) map from a finitely connected circular domain (i.e.
a domain whose complement consists of a finite number of closed disks) to a finitely
connected polygonal domain has been the object of intense study since the publica-
tion of the milestone paper [1] (see also [2], [3], [4], [5]). Since the Riemann Mapping
Theorem ensures that all simply connected domains are conformally equivalent to
the unit disk, the classical S-C formula is derived from the unit disk or the upper
halfplane. Analogously, the annulus is the domain of the S-C map in the doubly
connected case ([6], [7], [8]).

If the connectivity is three or higher, there are several canonical domains: circular,
a slit disk (a disk with concentric circular slits), a slit annulus (an annulus with
concentric circular slits), a circular slit domain, and others [9]. The first example of
an S-C map for domains of connectivity three or higher seems to be in [10], where
an S-C map is derived from a circular domain onto a polygonal domain consisting of
convex polygons. In [1], [4], and [5], the S-C map is from a circular domain, and the
derivation characterizes the global pre-Schwarzian on the Riemann sphere via the
Reflection Principle. The derivative of the map is expressed as an infinite product.
In [2] and [3], the S-C map is also from a circular domain, and the derivation
uses Schottky-Klein prime functions. In both approaches, the convergence of the
resulting infinite products is proved for sufficiently separated circular domains.

Our construction of the S-C function incorporates, similar to Crowdy’s, an inter-
mediate conformal mapping ψ from the Jordan domain D0 to a slit disk or a slit
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annulus in the bounded case, or to a circular slit domain in the unbounded case.
The S-C mapping is then rendered in the form f0 = f1 ◦ ψ where f1 has the form

f1(z) =
∫ z

0
exp(u1,2(ζ) + iv1,2(ζ))dζ. (1)

The function v1,2 ◦ ψ is harmonic on D0 and its harmonic conjugate, u1,2 ◦ ψ, is
single-valued. The boundary values of v1,2 ◦ ψ are a combination of the boundary
values of argψ, the harmonic measures of the boundary components of D0, and of
the boundary data of the polygonal domain. The details are presented in Section
2.2 and Section 4.

Our paper is organized as follows. Our main result is stated in Section 6. In Sec-
tion 2.1, we present two observations, Lemma 2.2 and Lemma 2.3, which motivate
our construction of the S-C map from bounded Jordan domains to bounded polyg-
onal domains. We verify the construction in Section 3. While the construction can
be applied to any Jordan domain, in Section 4 we show that when it is applied to
a bounded analytic domain it yields a compact formula for the S-C map onto a
bounded polygonal domain. In Section 5, we discuss the slight modifications of the
construction for the unbounded case. The results up to this point are summarized
in Section 6. The next two sections contain a derivation from our results of the
classical formulas for the unit disk and the annulus. Section 9 discusses the context
of our results and prospects for applications.

2. An explicit construction for the bounded case

Let Ext(Γ) denote the exterior of the Jordan curve Γ. We identify a Jordan curve
with any of its parametrizations.

We assume we are given the following data.

Given Data 2.1

(1) A bounded domain D0 bounded by Jordan curves Γ0, . . . ,ΓM , the outer-
most of which is Γ0.

(2) A selection of prevertices {a(j)
k }j=0,...,M,k=1,...,nj

such that a(j)
k ∈ Γj and

Γ−1
j (a(j)

1 ) < . . . < Γ−1
j (a(j)

nj ).

(3) A selection of reals in (0, 1), {β(j)
k }j=0,...,M,k=1,...,nj

, such that

nj∑
k=1

(1− β
(j)
k ) = 2.

(4) A ζ0 ∈ D0.

We say that these given data are satisfactory if there is a conformal map φ0 onto
a bounded polygonal domain P such that

• φ0 maps D0 onto P ,
• φ0 maps a(j)

k to a vertex of a boundary component of P , p(j)
k ,

• the exterior angle at p(j)
k is π(1− β

(j)
k ),

• φ′0(ζ0) = 1, and
• φ0(ζ0) = 0.

Not all choices for Given Data 2.1 are satisfactory. See, e.g., page 143 of [11]. So,
henceforth we assume that we are dealing with a satisfactory choice. It then follows
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that φ0 and P are unique. Our main result is that we can derive φ0 and hence P
from these data. In applications, it may be the case that P is part of the given
data and one wishes to compute the prevertices and thereby φ0. This leads to the
prevertex problem which is discussed in [12] and [5].

2.1. Some preliminary definitions and observations

Let D1 be a slit disk or slit annulus domain for which there exists a conformal map
ψ of D0 onto D1. We also assume that the outermost boundary curve of D1 is ∂D,
and that the center of D1 is 0. Let ζ1 = ψ(ζ0). Let γj = ψ[Γj ]. Let rj be the radius
of γj . When j 6= 0, let b(j)0 and b

(j)
1 be the two points on Γj that map under ψ to

endpoints of γj . Let φ1 = φ0 ◦ ψ−1.
Let c(0)

k = a
(0)
k . Suppose 1 ≤ j ≤M . Let

S
(j)
k = {a(j)

k | 1 ≤ k ≤ nj} ∪ {b(j)0 , b
(j)
1 }.

Let {c(j)k }k=1,...,ηj
be an enumeration of S(j)

k . We can assume this enumeration is
chosen so that

Γ−1
j (c(j)k ) < Γ−1

j (c(j)k+1)

whenever 1 ≤ k < ηj .
For k > nj , let c(j)k = c

(j)
k′ where k′ ∈ {1, . . . , ηj} and k ≡ k′ mod ηj .

For all k ≥ 1, let t(j)k = Γ−1
j (c(j)k ). We also let, for all k ≥ 1, A(j)

k be the arc on

Γj from c
(j)
k to c(j)k+1 that does not contain any c(j)k′ .

Let E = A
(j)
k . We let φ0,E be an analytic extension of φ0 past E whose domain

does not contain any c
(j)
k . Let ψE be an analytic extension of ψ past E whose

domain does not contain any c
(j)
k . We can assume dom(φ0,E) = dom(ψE). This

extension of ψ may not be one-to-one. However, there is at least a neighborhood
of E, WE , in which ψ is one-to-one. Let φ1,E = φ0,E ◦ (ψE |WE

)−1.
Let arg1 be a branch of Arg on a simply connected domain which omits ψ(a(0)

1 )
and contains γ1, . . . , γn as well as ∂D− {ψ(a(0)

1 )}.

Lemma 2.2: Suppose E = A
(j)
k . Then, ζ 7→ Arg(ψ(ζ)φ′1,E(ψ(ζ))) is constant on

E.

Proof : We begin by choosing θ1, θ2 so that rjeiθ1 = c
(j)
k and rje

iθ2 = c
(j)
k+1. We

assume without loss of generality that θ1 < θ2. When θ1 < θ < θ2, let

σ(θ) = φ1,E(rjeiθ).

Therefore, σ traces a line segment. Hence, the unit tangent vector to the curve
σ is the same at every point. But, the unit tangent vector to σ at (θ, σ(θ)) is
exp(iArg(σ′(θ))). It follows that Arg(σ′) is constant. On the other hand,

σ′(θ) = φ′1,E(rjeiθ)rjieiθ.

Hence,

Arg(σ′(θ)) = Arg(ψ(θ)φ′1,E(ψ(θ))) +
π

2
.
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The Lemma follows. �

Let C(j)
k be the value of Arg(ψ · φ′1,E ◦ ψ) on A(j)

k .

If c(j)k = a
(j)
k′ and if ψ(c(j)k ) is not an arc endpoint in D1, then let δ(j)k = β

(j)
k′ . If

ψ(c(j)k ) is an arc endpoint in D1, but if c(j)k is not a prevertex, then let δ(j)k = 2.
Finally, if ψ(c(j)k ) is an arc endpoint in D1, and if c(j)k = a

(j)
k′ , then let δ(j)k′ = β

(j)
k′ +1.

Write x ≡ y if x is equivalent to y modulo 2π.

Lemma 2.3: C
(j)
k+1 − C

(j)
k ≡ π(1− δ

(j)
k+1).

Proof : We first choose θ1, θ2, θ3 ∈ [0, 2π) so that

rje
iθ1 = ψ(c(j)k )

rje
iθ2 = ψ(c(j)k+1)

rje
iθ3 = ψ(c(j)k+2).

Let

γ(t) =
{

t(θ2 − θ1) + θ1 0 ≤ t ≤ 1
(t− 1)(θ3 − θ2) + θ2 1 ≤ t ≤ 2

Let E1 = A
(j)
k , and let E2 = A

(j)
k+1. Let

σ(t) =
{
φ1,E1(rjeiγ(t)) 0 ≤ t ≤ 1
φ1,E2(rjeiγ(t)) 1 ≤ t ≤ 2

We first consider the case where c(j)k+1 is a preimage of an arc endpoint (under ψ)

but is not a prevertex. It follows that, π(1 − δ
(j)
k+1) = −π. It also follows that σ

traces a line segment. Hence, Arg(σ′) is constant. However, in this case, θ2 − θ1
and θ3 − θ2 have opposite sign. So, when 0 < t < 1, it follows that Arg(σ′(t)) =
C

(j)
k +π/2, and when 1 < t < 2 it follows that Arg(σ′(t)) = C

(j)
k+1+π/2. Hence,

C
(j)
k+1 − C

(j)
k = +π ≡ π(1− δ

(j)
k+1).

Now, suppose c(j)k+1 is a prevertex but not a ψ-preimage of an arc endpoint. In
this case, θ2 − θ1 and θ3 − θ2 have the same sign. It follows that when 0 < t < 1,
Arg(σ′(t)) = C

(j)
k +π/2, and when 1 < t < 2, Arg(σ′(t)) = C

(j)
k+1+π/2. It then

follows that C(j)
k+1 − C

(j)
k is the exterior angle at p(j)

k+1 which is π(1− δ
(j)
k+1).

The remaining case follows by a combination of the above cases. �

2.2. The construction

We now construct a sequence of harmonic functions. Some of these harmonic func-
tions will be constructed to have domain D0, and some will be constructed to have
domain D1. We begin in D0. Let θ(j)

k = π(1− δ
(j)
k ). Let:

σ
(j)
1 = 0

σ
(j)
2 = θ

(j)
2

σ
(j)
k = σ

(j)
k−1 + θ

(j)
k 1 < k ≤ ηj
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Let v0,1 be the harmonic function on D0 whose limit at each ζ ∈ A(j)
k is

σ
(j)
k − arg1(ψ(ζ)). (2)

The existence and uniqueness of v0,1 is guaranteed by say Theorem II.1.1 of [13].
Let ω denote the harmonic measure function, and let ωj = ω(·,Γj , D0). There

exist unique b1, . . . , bM such that

v0,2 =df v0,1 +
M∑
j=1

bjωj (3)

has a single-valued harmonic conjugate. These numbers can be expressed in terms
of the Riemann matrix of D0 and the harmonic measure functions of D0. See, e.g.,
Lemma B.2 of [13].

For all z ∈ D0, let

u0,2(z) = −
∫ z

ζ0

∂v0,2
∂n

ds.

Hence, the conjugate of u0,2 is v0,2.
We now move to the slit disk domain. Let:

u1,2 = u0,2 ◦ ψ−1 (4)

v1,2 = v0,2 ◦ ψ−1

It follows that the conjugate of u1,2 is v1,2.
Let

H(z) = exp(u1,2(z) + iv1,2(z)).

For all z ∈ D1, let

f1(z) =
∫ z

ζ1

H(ζ)dζ.

Let f0 = f1 ◦ ψ. Hence, for the moment at least, f0 and f1 are only multi-valued
functions. However, we will show in Section 3 that they are in fact single-valued,
and moreover f0, after normalization, is φ0. The situation thus far when D1 is a
slit disk and M = 2 is diagrammed in Figure 1.

3. Verification of the construction

For the sake of the verification, we can assume that all boundary curves are analytic.
See, for example, Lemma II.2.2 of [13].
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Γ
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1

Γ
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1

P
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1
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1

φ
1⋅

⋅
⋅

⋅

Figure 1. The construction

Let E = A
(j)
k . We can assume WE is closed under the reflection map of Γj . Let:

UE = WE ∩D0

AE = ψ[E]

CE = ψ[UE ]

SE = ψ[WE ]

Let C ′E be the reflection of CE about γj . Hence, SE = CE ∪ AE ∪ C ′E . These sets
are illustrated in Figure 2.

Lemma 3.1: Suppose E = A
(j)
k . Then, there is an analytic extension of f ′0|UE

to WE, f ′0,E.

Proof : To construct f ′0,E , we first take a primitive of H on CE , FE . That is,
F ′E = H. We will first show that for every ζ ∈ AE ,

lim
z→ζ,z∈CE

H(z) (5)

exists and that the resulting extension of H to CE ∪ AE is continuous. We then
demonstrate the resulting extension of FE maps AE into a line. This allows us to
extend FE to SE and define f ′0,E to be (F ′E ◦ ψE) · ψ′E .
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U
E

W
E

ψ C
E

C
E
'

S
E

Figure 2. The sets WE , UE , SE

Let ζ ∈ AE . To prove (5), it suffices to show that

lim
z→ζ,z∈CE

u1,2(z) (6)

exists. To this end, let ψ1 be a conformal map of CE onto D. Let:

u = u1,2 ◦ ψ−1
1

v = v1,2 ◦ ψ−1
1

z = reiφ ∈ D

Then,

−u(z) =
∫ π

−π

2r sin(φ− θ)v(eiθ)
1− 2r cos(φ− θ) + r2

dθ

2π

=
∫
ψ1[AE ]

2r sin(φ− θ)v(eiθ)
1− 2r cos(φ− θ) + r2

dθ

2π

+
∫
∂D−ψ1[AE ]

2r sin(φ− θ)v(eiθ)
1− 2r cos(φ− θ) + r2

dθ

2π
.

(See, e.g., Exercise II.11 of [13].) Let eiθ1 = ψ1(ζ). The denominator of the latter
integral is therefore bounded away from 0 as (r, φ) approaches (1, θ1). When eiθ ∈
ψ1[AE ], v(eiθ) = C + arg1(ψ

−1
1 (eiθ)) by (2), (3), and (4). Since the conjugate of a
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constant is a constant, it follows that

lim
(r,φ)→(1,θ1)

∫
ψ1[AE ]

2r sin(φ− θ)C
1− 2r cos(φ− θ) + r2

dθ

2π

exists. Since AE does not contain a prevertex, we can assume CE small enough so
as to be contained in dom(arg1). Hence,∫ π

−π

2r sin(φ− θ) arg1(ψ
−1
1 (eiθ))

1− 2r cos(φ− θ) + r2
dθ

2π
= ln |ψ−1

1 (reiφ)|.

And, ln |ψ−1
1 (eiθ1)| is defined. It follows that u1,2 has a limit at each point of AE .

It now follows that the resulting extension of H to CE∪AE is continuous. Hence,
the extension of FE to CE ∪AE is continuous. By construction, ζ 7→ Arg(ζF ′E(ζ))
is constant on AE . Hence, FE maps AE into a line segment. �

With E = A
(j)
k , we let (

f ′0
φ′0

)
E

=
f ′0,E
φ′0,E

.

Lemma 3.2: Let E = A
(j)
k . Then, Arg

(
f ′
0
φ′

0

)
E

is constant on E.

Proof : For each ζ ∈ E,

arg

(
f ′0,E(ζ)
φ′0,E(ζ)

)
= arg

(
ψ(ζ)H(ψ(ζ))
ψ(ζ)φ1,E(ψ(ζ))

)
.

From the construction along with (2), (3), and (4), we infer that the argument
of ψ · (H ◦ ψ) is constant on E. It follows from Lemma 2.2 that the argument of
ψ · (φ′1,E ◦ ψ) is constant on E. �

Lemma 3.3: Let E = A
(j)
k ∪A(j)

k+1. Then, there is an analytic extension of (f ′0/φ
′
0)

to a neighborhood of E, (f ′0/φ
′
0)E. Furthermore, the argument of this extension is

constant on E.

Proof : Let:

E1 = A
(j)
k

E2 = A
(j)
k+1

Let λE be a curve contained in D0 such that λE ∪ E is a Jordan curve, and let
UE be the interior of λE ∪E. It follows from what has been shown that f ′0/φ

′
0 has

a continuous extension to UE − {b}. Let h denote this extension. We note that if
ζ1 ∈ E1 and ζ2 ∈ E2, then

arg(ψE1(ζ1)H(ψE1(ζ1)) ≡ arg(ψE2(ζ2)H(ψE2(ζ2)) + π(1− δ
(j)
k ), and

arg(ψE1(ζ1)φ
′
1,E1

(ψE1(ζ1)) ≡ arg(ψE2(ζ2)φ
′
1,E2

(ψE2(ζ2)) + +π(1− δ
(j)
k ).

It follows that h maps E1, E2 into a line l through 0. Let α be such that eiαh maps
E1 and E2 into R. Hence, Im(eiαh) = 0 on E−{b}. It is undefined at b. But, if we
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set it to 0 at b, we obtain the same harmonic function on UE as Im(eiαh). So, we
can assume Im(eiαh) = 0 on E. Hence, h has a limit at b. Let WE be the image
of UE under the reflection map of E. Then, h extends analytically to WE . Denote
this extension by (f ′0/φ

′
0)E . Note that the argument of (f ′0/φ

′
0)E is constant on E.

�

It now follows that f ′0/φ
′
0 has an analytic extension to a neighborhood of D0. It

also follows that the argument of f ′0/φ
′
0 is constant on each Γj .

Let Q = f ′0/φ
′
0. Hence, Q[Γj ] is contained in a ray extending from the origin. Let

w0 ∈ C−Q[∂D0]. Hence, the Winding Number of Q[Γj ] around w0 is 0. It follows
by a simple computation that

∫
Γj

Q′(ζ)
Q(ζ)− w0

dζ = 0.

We assume each Γj is positively oriented with respect toD0. SinceQ has an analytic
extension to a neighborhood of D0, it now follows from the Argument Principle
that w0 6∈ ran(Q). Hence, the range of Q is contained in a set with empty interior.
It then follows from the Open Mapping Theorem that Q is constant.

It now follows that f0 is single-valued and

φ0(z) =
f0(z)− f0(ζ0)

f ′0(ζ0)
.

Hence, we have constructed φ0 from the given data.

4. An explicit formula for analytic domains

We suppose our boundary curves are analytic so that we can use the Poisson
Integral Formula (see, e.g., Theorem II.2.5 of [13]). To this end, let G denote the
Green’s function of D0. At the same time, we abbreviate G(z, ζ0) by G(z).

When u is harmonic in D0, let û denote the analytic function whose domain is
D0 and whose imaginary part has the form

u+
M∑
j=1

bj(u)ωj .

The operators b1, . . . , bM are linear. It follows that u 7→ û is linear. We can then
write

f0(z) =
∫ ψ(z)

ζ1

exp(Λ̂(ψ−1(ζ))− Ω̂(ψ−1(ζ))dζ

=
∫ z

ζ0

exp(Λ̂(ζ)− Ω̂(ζ))ψ′(ζ)dζ
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where:

Λ̂(z) =
∑
k,j

σ
(j)
k ω̂(z,A(j)

k , D0)

Ω(z) = − 1
2π

∫
∂D0

Arg(ψ(z))
∂G(z, ζ)
∂nζ

ψ(z) = exp(−Ĝ(z))

5. The unbounded case

We assume we are given the following.

Given Data 5.1

(1) Jordan curves Γ1, . . . ,ΓM such that

Γj ⊆
⋃
k 6=j

Ext(Γk).

(2) Prevertices {a(j)
k }j=1,...,M,k=1,...,nj

such that

• a
(j)
k ∈ Γj , and

• a
(j)
k 6= a

(j)
k′ if k 6= k′.

(3) {β(j)
k }j=1,...,M,k=1,...,nj

such that

nj∑
k=1

(1− β
(j)
k ) = 2.

(4) A point

ζ0 ∈ D0 =df

M⋂
j=1

Ext(Γk).

Assume there is a conformal map φ0 of D0 onto a polygonal exterior domain P
such that

• φ0 maps a(j)
k to a vertex of a boundary component of P , p(j)

k ,

• the exterior angle at p(j)
k is π(1− β

(j)
k ),

• φ′0(ζ0) = 1, and
• φ0(ζ0) = 0.

It follows that φ0 and P are unique. Let D1 be a circular slit domain for which there
exists a conformal map ψ of D0 onto D1. We can assume these slits are centered
at 0. Let ζ1 = ψ(ζ0). We can now proceed exactly as in Section 2.

6. Main theorem

The above results can be summarized as follows.

Theorem 6.1 : Let P be an M + 1 connected polygonal region (bounded or un-
bounded) and D0 be a conformally equivalent domain (bounded or unbounded),
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whose boundary curves are analytic. Then D0 is mapped conformally onto P by a
function of the form af0(z) + b, where

f0(z) =
∫ z

ζ0

exp(Λ̂(ζ)− Ω̂(ζ))ψ′(ζ)dζ,

Λ̂(z) =
∑
k,j

σ
(j)
k ω̂(z,A(j)

k , D0),

Ω(z) = − 1
2π

∫
∂D0

Arg(ψ(z))
∂G(z, ζ)
∂nζ

,

and ψ is as defined in the last two sections.

7. Derivation of the classical formula for the disk

Suppose M = 0 and D0 = D. Let us take ζ0 = 0. Hence, D1 = D0 and ψ = IdD.
Let us assume without loss of generality that a(0)

1 = −1. Take arg1 to be a branch
of Arg on C− (−∞, 0]. It now follows that

Λ̂(z) =
n0∑
k=1

σ
(0)
k ω̂(z,A(0)

k ,D), and

Ω(z) =
∫
∂D

arg1(ζ)Pz(e
iθ)
dθ

2π
.

Since D0 = D, v0,2 = v0,1.
Let Log1 be the analytic branch of Log corresponding to arg1. It follows that

for all ζ ∈ D, Ω̂(ζ) and 2Log1(1 + ζ) have the same imaginary part. We then infer
that, modulo a constant, Ω̂(z) = 2 Log1(1 + z).

We now analyze Λ̂. Set anj+1 = a
(0)
1 . It then follows that

ω(z,A(0)
k ,D) =

1
π

Arg

(
z − a

(0)
k+1

z − a
(0)
k

)
+ Const..

(See, e.g. Exercise I.1(a) of [13].) So,

ω̂(z,A(0)
k ,D) =

1
π

Log

(
z − a

(0)
k+1

z − a
(0)
k

)
+ Const..

A fairly straightforward computation now reveals that,

Λ̂(z) =
1
π

(
n0∑
k=1

(−θ(0)
k ) Log(z − a

(0)
k ) + 2π Log(z − a

(0)
1 )

)
+ Const..

But, z − a
(0)
1 = 1 + z, and so it follows that,

Λ̂(z)− Ω̂(z) =
n0∑
k=1

−(1− β
(0)
k ) Log(z − a

(0)
k ) + Const.. (7)
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Since ψ = IdD, u1,2 = u0,2 and v1,2 = v0,2. Hence, there is a constant C such that

H(z) = C

n0∏
k=1

1

(z − a
(0)
k )1−β

(0)
k

.

The classical result now follows.

8. Derivation of the classical formula for the annulus

In the first part of this section we assume D1 = D0 and ψ = Id. In the second
part, the same derivation will be carried out for the situation where D1 is the slit
disk. The derivation in the first part is a warm-up for the next derivation.

Preliminaries

Suppose M = 1. We assume Γ0 = ∂D and Γ1 = ∂Dµ(0). We assume ζ0 = τ ∈ R. We
orient Γ0 counterclockwise and Γ1 clockwise. We assume without loss of generality
that the points of each sequence {c(j)k }k=1,...,ηj

appear in counterclockwise order.
Let παj,k be the interior angle of P at p(0)

k .
Let

Θ(z) =
∞∏
k=1

(1− µ2k−1z)(1− µ2k−1z−1).

Note that

Θ(µ−1z) =
∞∏
k=1

(1− µ2k−2z)(1− µ2kz−1)

Θ(µz) =
∞∏
k=1

(1− µ2k−2z−1)(1− µ2kz)

The classical formula can now be rendered

φ0(z) = Const.×
∫ z

ζ0

n0∏
m=1

(
Θ

(
ζ

µa
(0)
m

))α0,m−1 n1∏
m=1

(
Θ

(
µζ

a
(1)
m

))α1,m−1

dζ

See, e.g. Section 17.5 of [8]. Note that

Θ
(

w

µw0

)
=
(

1− w

w0

) ∞∏
k=1

(
1− µ2k w

w0

)(
1− µ2kw0

w

)

Θ
(
µw

w0

)
=
(
1− w0

w

) ∞∏
k=1

(
1− µ2k w

w0

)(
1− µ2kw0

w

)
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The numbers αj,k satisfy the relations

n1∑
k=1

α1,k = n1 + 2

n0∑
k=1

α0,k = n0 − 2

Hence, we can set α1,k = 2− β
(1)
k and α0,k = β

(0)
k .

Calculation of Λ̂

First of all, we can write G in the form

G(z, ζ) = −[ω0(z) Log |ζ|+ Log |p(z, ζ)|]

where

p(z, ζ) =
∞∏
k=1

1− µ2k−2ζ−1z

1− µ2k−2ζz

1− µ2kζz−1

1− µ2kζ
−1
z−1

and ω0 is the harmonic measure function of Γ0 with respect to D0. (See e.g. page
260 of [8]; note that we use a different normalization.)

8.1. Part 1: D1 is an annulus

The normal derivative of G in the direction of the outer normal with respect to
a circle coincides with the partial derivative with respect to the radius. It follows
from the Chain Rule that on ∂D,

∂

∂rζ
Log(1− µ2k−2ζ−1z) = − ∂

∂rζ
Log(1− µ2k−2ζz), and

∂

∂rζ
Log(1− µ2kζz−1) = − ∂

∂rζ
Log(1− µ2kζ

−1
z−1)

Hence, on ∂D,

− ∂G(z, ζ)
∂nζ

= ω0(z)
∂

∂nζ
(Log |ζ|) + 2

∞∑
k=1

∂

∂nζ
(Log |1− µ2k−2ζ−1z|+ Log |1− µ2kζz−1|).

(8)
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Using the Cauchy-Riemann equations for normal and tangential derivatives we
obtain

ω(z,A(0)
m , D0) = − 1

2π

∫
A

(0)
m

∂G(z, ζ)
∂nζ

dsζ

= Const.× ω0(z)

+
1
π

∞∑
k=1

[
Arg

(
1− µ2k−2z/a

(0)
m+1

1− µ2k−2z/a
(0)
m

)
+ Arg

(
1− µ2ka

(0)
m+1/z

1− µ2ka
(0)
m /z

)]
.

Fix ζ ∈ ∂D. When k ≥ 1, |µ2kζ/z| < µ for all z ∈ D0. It follows that

z ∈ D0 7→ Log
∣∣∣∣1− µ2k ζ

z

∣∣∣∣
has a single-valued conjugate for all k ≥ 1. When k ≥ 1, |µ2k−2z/ζ| < 1 for all
z ∈ D0. Thus,

z ∈ D0 7→ Log
∣∣∣∣1− µ2k−2 z

ζ

∣∣∣∣
has a single-valued conjugate when k ≥ 1. We infer

ω̂(z,A(0)
m , D0) = Const.

+
1
π

∞∑
k=1

[
Log

(
1− µ2k−2z/a

(0)
m+1

1− µ2k−2z/a
(0)
m

)
+ Log

(
1− µ2ka

(0)
m+1/z

1− µ2ka
(0)
m /z

)]
.

It then follows that

n0∑
m=1

σ(0)
m ω̂(z,A(0)

m , D0) = Const. + 2
∞∑
k=1

Log

(
1− µ2k−2 z

a
(0)
1

)
(9)

+2
∞∑
k=1

Log

(
1− µ2k a

(0)
1

z

)

+
n0∑
m=1

∞∑
k=1

(β(0)
m − 1) Log

(
1− µ2k−2 z

a
(0)
m

)

+
n0∑
m=1

∞∑
k=1

(β(0)
m − 1) Log

(
1− µ2k a

(0)
m

z

)
.

Now, on ∂Dµ(0),

− ∂

∂rζ
Log(1− µ2k−2ζz) =

∂

∂rζ
Log(1− µ2kζ−1z),

and

− ∂

∂rζ
Log(1− µ2kζ

−1
z−1) =

∂

∂rζ
Log(1− µ2k−2ζz−1).
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At the same time, on ∂Dµ(0),

∂

∂rζ
Log

∣∣∣∣1− z

ζ

∣∣∣∣− ∂

∂rζ
Log

∣∣∣∣1− ζ

z

∣∣∣∣ = ∂

∂rζ
Log

∣∣∣∣zζ
∣∣∣∣ = − 1

µ
.

So, on ∂Dµ(0),

− ∂G(z, ζ)
∂nζ

= ω0(z)
∂

∂nζ
Log |ζ|+ 2

∞∑
k=1

∂

∂nζ
(Log |1− µ2k−2ζ−1z|+ Log |1− µ2kζz−1|).

(10)

Again, using the Cauchy-Riemann equations for normal and tangential derivatives
we obtain

ω̂(z,A(1)
m , D0)

= − 1
2π

∫
A

(1)
m

∂G(z, ζ)
∂nζ

dsζ

= Const.

+
1
π

∞∑
k=1

[
Arg

(
1− µ2k−2z/c

(1)
m

1− µ2k−2z/c
(1)
m+1

)
+ Arg

(
1− µ2kc

(1)
m /z

1− µ2kc
(1)
m+1/z

)]
.

(11)

It now follows that

n1∑
m=1

σ(1)
m ω̂(z,A(1)

m , D0) = Const.− 2
∞∑
k=1

Log

(
1− µ2k−2 z

a
(1)
1

)
(12)

−2
∞∑
k=1

Log

(
1− µ2k a

(1)
1

z

)

+
n1∑
m=1

∞∑
k=1

(1− β(1)
m ) Log

(
1− µ2k−2 z

a
(1)
m

)

+
n1∑
m=1

∞∑
k=1

(1− β(1)
m ) Log

(
1− µ2k a

(1)
m

z

)
.

We now obtain:

exp(Λ̂)(z)

=
Θ(µ−1z/a

(0)
1 )2

Θ(µ−1z/a
(1)
1 )2

n0∏
m=1

Θ

(
µ−1 z

a
(0)
m

)β(0)
m −1 n1∏

m=1

Θ

(
µ−1 z

a
(1)
m

)1−β(1)
m

.
(13)
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Calculation of Ω̂

Since ψ = Id, we have

Ω(z) = − 1
2π

∫
∂D0

Arg(ζ)
∂G(z, ζ)
∂nζ

dsζ .

Let

E1
0 (z) = − 1

2π

∫
∂Dµ(0)

Arg(ζ)
∂G(z, ζ)
∂nζ

dsζ

E1
1 (z) = − 1

2π

∫
∂D

Arg(ζ)
∂G(z, ζ)
∂nζ

dsζ

It follows from the Chain Rule that on ∂D

∂

∂nζ
Log(1− µ2k−2ζ−1z) =

µ2k−2ζ−1z

1− µ2k−2ζ−1z

∂

∂nζ
Log(1− µ2kζz−1) = − µ2kζz−1

1− µ2kζz−1

We can then conclude from (8) that on ∂D,

−∂G(z, ζ)
∂nζ

= ω0(z) + 2 Re
∞∑

k,n=1

[(µ2k−2zζ−1)n − (µ2kz−1ζ)n] (14)

Let a(0)
1 = eiθ1 . We conclude that

E1
1 (z)

= ω0(z) +
Re
π

∫ θ1+2π

θ1

t

∞∑
k,n=1

[(µ2k−2z)ne−int − (µ2kz−1)neint]dt

= ω0(z) +
Re
π

∞∑
n,k=1

2πi

[
(µ2k−2z/a

(0)
1 )n

n
+

(µ2ka
(0)
1 /z)n

n

]

= ω0(z)− 2 Re i
∞∑
k=1

[
Log

(
1− µ2k−2 z

a
(0)
1

)
+ Log

(
1− µ2k a

(0)
1

z

)]

= ω0(z) + 2
∞∑
k=1

[
Arg

(
1− µ2k−2 z

a
(0)
1

)
+ Arg

(
1− µ2k a

(0)
1

z

)]
.

(15)

It now follows that modulo a constant

exp(Ê1
1 )(z) = Θ

(
µ−1z/a

(0)
1

)2
(16)



October 22, 2010 14:23 Complex Variables and Elliptic Equations andreev˙mcnicholl

Complex Variables and Elliptic Equations 17

To compute E1
0 we note that on ∂Dµ

∂

∂nζ
Log(1− µ2k−2ζ−1z) =

−1
µ

µ2k−2ζ−1z

1− µ2k−2ζ−1z

∂

∂nζ
Log(1− µ2kζz−1) =

1
µ

µ2k−2ζz−1

1− µ2kζz−1

and from (10) that

−∂G(z, ζ)
∂nζ

= Const.− ω0(z)
µ

− 2
µ

Re
∞∑
k=1

[(µ2k−2ζ−1z|)n − (µ2k−2ζz−1)n].

By a calculation identical to (15) we obtain that

E1
0 (z) = Const.− ω0(z)− 2

∞∑
k=1

[
Arg

(
1− µ2k−2 z

a
(1)
1

)
+ Arg

(
1− µ2k a

(1)
1

z

)]
.

Therefore

exp(Ê1
0 )(z) = Θ

(
µ−1z/a

(1)
1

)−2

and

exp(−Ω̂)(z) =
Θ
(
µ−1z/a

(1)
1

)2

Θ
(
µ−1z/a

(0)
1

)2 (17)

Pulling it all together

It now follows from (13) and (17) that

f ′0(z) =
n0∏
m=1

Θ

(
µ−1 z

a
(0)
m

)β(0)
m −1

Θ

(
µ−1 z

a
(1)
m

)1−β(1)
m

,

which is equivalent to the classical formula.

8.2. Part 2: D1 is a Slit Disk

The derivation follows the pattern in Part 1. Formulas (9) and (11) are the same as
in Part 1. Since the inner circle of the annulus is mapped under ψ onto a circular
slit, let b(1)0 and b

(1)
1 be two points that are mapped under ψ to the endpoints of
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γ1. Hence (12) takes the form

n1∑
m=1

σ(1)
m ω̂(z,A(1)

m , D0) = Const

+
n1∑
m=1

∞∑
k=1

(1− β(1)
m ) Log

(
1− µ2k a

(1)
m

z

)

+
n1∑
m=1

∞∑
k=1

(1− β(1)
m ) Log

(
1− µ2k−2 z

a
(1)
m

)

−
∞∑
k=1

Log

(
1− µ2k−2 z

b
(1)
0

)

−
∞∑
k=1

Log

(
1− µ2k−2 z

b
(1)
1

)

−
∞∑
k=1

Log

(
1− µ2k b

(1)
0

z

)

−
∞∑
k=1

Log

(
1− µ2k b

(1)
1

z

)
.

Combining the last result with (9), we now obtain:

exp(Λ̂)(z) =
Θ(µ−1z/a

(0)
1 )2

Θ(µ−1z/b
(1)
0 )Θ(µ−1z/b

(1)
1 )

n0∏
m=1

Θ

(
µ−1 z

a
(0)
m

)β(0)
m −1 n1∏

m=1

Θ

(
µ−1 z

a
(1)
m

)1−β(1)
m

.

Calculation of Ω̂

We first calculate Ĝ for the sake of calculating ψ. For the harmonic measure ω1

with value 1 on Γ1 and with value 0 on Γ0, we have on ∂D that

∂ω1

∂n
=
∂ω1

∂r
=

1
Logµ

and thus the period of ω1 with respect to ∂D is∫
∂D

∂ω1

∂n
ds =

∫ 2π

0

1
Logµ

dt =
2π

Logµ
.

Since

1
2π

(ω̂1(w)− 1) Log |τ | − Logµ
2π

ω̂1(w)ω1(τ) = − 1
2π

Log τ,

it follows that Ĝ(z) = −Log(p(z, τ))− 1
2π Log τ . Hence,

Ω(z) = − 1
2π

∫
∂D0

Arg(p(ζ, τ))
∂G(z, ζ)
∂nζ

dsζ .
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We have

Arg(p(z, τ)) = Arg
(
1− z

τ

)
+

∞∑
k=1

Arg
(
1− µ2k z

τ

)

+
∞∑
k=1

Arg
(
1− µ2k τ

z

)

−
∞∑
k=1

Arg
(
1− µ2k−2τz

)

−
∞∑
k=1

Arg
(
1− µ2kτ−1z−1

)

It follows, as in the calculation of Λ̂, that the last four terms are all single-valued
and have single-valued conjugates.

We now let

E(z) = − 1
2π

∫
∂D0

Arg
(
1− z

τ

) ∂G(z, ζ)
∂nζ

dsζ .

We can now write

Ω̂(z) = Ê(z)

+
∞∑
k=1

Log
(
1− µ2k z

τ

)

+
∞∑
k=1

Log
(
1− µ2k τ

z

)

−
∞∑
k=1

Log
(
1− µ2k−2τz

)

−
∞∑
k=1

Log
(
1− µ2kτ−1z−1

)
.

Hence,

exp(Ω̂(z)) = exp(Ê(z))
p(z, τ)
1− z

τ

. (18)

8.3. Calculation of Ê

We first note that

Arg
(
1− z

τ

)
= Arg

(
1− τ

z

)
+ π + Arg(z).



October 22, 2010 14:23 Complex Variables and Elliptic Equations andreev˙mcnicholl

20 Taylor & Francis and I.T. Consultant

Accordingly, we split E as

E = Const. + E0 + E0
1 + E1

1

where

E0(z) = − 1
2π

∫
∂Dµ(0)

Arg
(

1− ζ

τ

)
∂G(z, ζ)
∂nζ

dsζ

E0
1 (z) = − 1

2π

∫
∂D

Arg
(

1− τ

ζ

)
∂G(z, ζ)
∂nζ

dsζ

E1
1 (z) = − 1

2π

∫
∂D

Arg(ζ)
∂G(z, ζ)
∂nζ

dsζ

The formula for Ê1
1 is identical to (16) computed earlier. Combining (14) and, on

∂D,

Arg
(

1− τ

ζ

)
=

1
2i

[
Log

(
1− τ

z

)
− Log

(
1− τ

z

)]
=

1
2i

∞∑
n=1

[
− 1
n
τnζ−n +

1
n
τnζn

]

we obtain from a lengthy but straightforward computation that

E0
1 (z) = Re

1
i

∞∑
k,n=1

[
1
n

(
µ2kτ

z

)n
+

1
n

(
µ2k−2τz

)n]

= −Re
1
i

∞∑
k=1

[
Log

(
1− µ2k τ

z

)
+ Log

(
1− µ2k−2τz

)]

= −
∞∑
k=1

[
Arg

(
1− µ2k τ

z

)
+ Arg

(
1− µ2k−2τz

)]
.

To compute E0, we need a slightly different expression than (10) for the normal
derivative of G on ∂Dµ(0). We start by observing that:

∂ Log
(
1− µ2k−2ζ−1z

)
∂nζ

=
∂ Log

(
1− µ2kζ−1z

)
∂nζ

+
∂ Log

(
1− ζ−1z

)
∂nζ

−
∂ Log

(
1− µ2k−2ζz

)
∂nζ

=
∂ Log

(
1− µ2kζ−1z

)
∂nζ

−
∂ Log

(
1− µ2kζ

−1
z−1
)

∂nζ
=
∂ Log

(
1− µ2kζz−1

)
∂nζ

+
∂ Log (1− ζ/z)

∂nζ

∂ Log (1− z/ζ)
∂nζ

+
∂ Log (1− ζ/z)

∂nζ
=
∂ [Log (−z/ζ) + 2 Log (1− ζ/z)]

∂nζ
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It now follows that on ∂Dµ(0)

−∂G(z, ζ)
∂nζ

=
ω0 (z)
µ

+ 2 Re
∞∑
k=1

∂

∂nζ

[
Log

(
1− µ2kζ−1z

)
+ Log

(
1− µ2k−2ζz−1

)]

=
ω0 (z)
µ

+ 2µ−1 Re
∞∑

k,n=1

[(
µ2kz

)n
ζ−n −

(
µ2k−2/z

)n
ζn
]
.

If ζ = µeit, then

Arg
(

1− ζ

τ

)
=

1
2i

[
Log

(
1− ζ

τ

)
− Log

(
1− ζ

τ

)]
=

1
2i

∞∑
n=1

[
− 1
n

(µ
τ

)n
eint +

1
n

(µ
τ

)n
e−int

]
.

We now obtain by a lengthy but fairly straightforward computation that

E0(z) = ω0(z) + Re
1
i

∞∑
n,k=1

[
1
n

(
µ2kz

τ

)n
+

1
n

(
µ2k

zτ

)n]

= ω0(z)− Re
1
i

∞∑
k=1

[
Log

(
1− µ2k z

τ

)
+ Log

(
1− µ2k

zτ

)]

= ω0(z)−
∞∑
k=1

[
Arg

(
1− µ2k z

τ

)
+ Arg

(
1− µ2k

zτ

)]
.

Notice that

exp(Ê0
1 (z)) exp(Ê0(z)) =

(
1− z

τ

)
Θ(µ−1z/τ)−1Θ(µz/τ)−1.

Hence,

exp(Ω̂(z)) = Θ(µ−1z/a
(0)
1 )2

(
1− z

τ

)
Θ(µ−1z/τ)−1Θ(µz/τ)−1

Pulling it all together

It now follows that

f ′0(z) = N(z)
n0∏
m=1

Θ

(
µ−1 z

a
(0)
m

)β(0)
m −1

Θ

(
µ−1 z

a
(1)
m

)1−β(1)
m

where

N(z) =
Θ(µ−1z/τ)Θ(µz/τ)Ĝ′(z)

Θ(µ−1z/b
(1)
0 )Θ(µ−1z/b

(1)
1 )

By direct calculation, Θ(µ2z) = −z−1Θ(z). We then conclude from our expression
for Ĝ that Ĝ(z) = Ĝ(µ2z). Hence, Ĝ′(µ2z) = Ĝ′(z)µ−2. Since τ is real, ψ(z) = ψ(z).
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It then follows from elementary calculus that b(1)1 = b
(1)
0 . We then infer that

N(µ2z) = µ−4N(z).

Hence, z 7→ z2N(z) is a loxodromic function that is analytic except possibly at 0.
Thus, by Liouiville’s theorem for loxodromic functions, this function is constant.
(See, e.g. [14].) Let C denote this constant. It then follows that

f ′0(z) = Cz−2
n0∏
m=1

Θ

(
µ−1 z

a
(0)
m

)β(0)
m −1

Θ

(
µ−1 z

a
(1)
m

)1−β(1)
m

= Cφ′0(z).

The derivation is complete.

9. Discussion

The previous two sections provide strong evidence that Theorem 6 provides a simple
unified framework for deriving explicit formulae for Schwarz-Christoffel mappings
from analytic domains which are bounded or unbounded to polygonal domains
which are bounded or unbounded. Another consequence of our work is that it is
possible to contruct Schwarz-Christoffel mappings in the spirit of M. Schiffer; that
is, in terms of the functions of potential theory [15]. In particular, if the boundary
curves are analytic, such a map can be explicitly expressed in terms of the Green’s
function of D0. A formula for the Green’s function of a circular domain in terms
of elementary functions is given in [16]. Another formula based on a convergent
approach can be found in [? ].

In a forthcoming paper, we will demonstrate a computational relationship be-
tween φ0 and the Given Data 2.1.
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circular domains, Vyčisl. Prikl. Mat. (Kiev) (1978).
[11] H. Kober Dictionary of conformal representations, Dover Publications Inc., New York, N. Y., 1957.
[12] T.A. Driscoll and L.N. Trefethen Schwarz-Christoffel mapping, Cambridge Monographs on Applied

and Computational Mathematics Vol. 8, Cambridge University Press, Cambridge, 2002.
[13] J.B. Garnett and D.E. Marshall Harmonic measure, New Mathematical Monographs Vol. 2, Cam-

bridge University Press, Cambridge, 2005.
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