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AN OPERATOR-THEORETIC EXISTENCE PROOF OF

SOLUTIONS TO PLANAR DIRICHLÉT PROBLEMS

TIMOTHY H. MCNICHOLL

Abstract. By using some elementary techniques from operator theory, we
prove constructively prove the existence of solutions to Dirichlét problems
for planar Jordan domains with at least two boundary curves. An iterative
method is thus obtained, and explicit bounds on the error in the resulting
approximations are given. Finally, a closed form for the solution is given. No
amount of differentiability of the boundary is assumed.

1. Introduction

Suppose we are given a bounded Jordan domain D ⊆ C and a piecewise contin-
uous function f : ∂D → R. The resulting Dirichlét problem is to find a harmonic
function on D, u, such that

lim
z→ζ

u(z) = f(ζ)(1.1)

for all ζ ∈ ∂D at which f is continuous. It is well-known that this Dirichlét
problem has a solution. Once the existence of u is demonstrated, uniqueness follows
immediately from the Maximum Principle for harmonic functions. That is, there
is exactly one harmonic function on D, u, for which Equation (1.1) holds. See,
e.g., Chapters I and II of [4]. Accordingly, we denote this function uf . Dirichlét
problems for other kinds of domains exist but will not be considered here.

When D is simply connected, that is when D is the interior of a Jordan curve,
it is fairly straightforward to prove the existence of uf . In particular, when D is
the unit disk D,

uf (z) =
1

2π

∫

∂D

f(ζ)P (z, ζ)dsζ ,

where

P (z, ζ) =
1− |z|2

|z − ζ|2

and dsζ is the differential of arc length with respect to the variable ζ. The function
P is of course called the Poisson kernel. Since the composition of a harmonic
function with an analytic function yields a harmonic function, the existence of
uf for simply connected Jordan domains now follows from the Riemann Mapping
Theorem and the Carathéodory Theorem.

When D is bounded by more than one Jordan curve, there are at least two
methods available to prove the existence of uf . One is an extreme-value argument
as in Section 6.4.2 of [1]. If one desires a constructive proof, a natural choice is the
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Schwarz alternating method which is described in Section IV.2 of [2] and in Chapter
II of [4]. A sequence of harmonic functions u1 ≥ u2 ≥ u3 . . . that converges to u

is produced thereby. However, the proof does not give any information about the
rate of convergence which is essential for error control when designing a numerical
method. Nevertheless, it is hinted in the exercises of [4] that the Schwarz alternating
method can be turned into an integral operator which in turn leads to a numerical
method with error control.

Here, we will turn this chain of ideas on its head and give what appears to be a
new and constructive proof of the existence of solutions to Dirichlét problems for
planar Jordan domains based on some fairly elementary ideas from operator theory.
Namely, we will first define an integral operator and then show it has a fixed point
u. We will then show that this fixed point extends to a harmonic function on D

for which Equation (1.1) holds. We will also give explicit bounds on the error in
the resulting sequence of iterations. Finally, we use these results to derive a closed
form for the solution to the Dirichlét problem. All results hold for an arbitrary
Jordan domain with at least two boundary curves, even those whose boundary is
nowhere differentiable.

2. A few preliminaries

When r is a positive real and z0 ∈ C, let Dr(z0) denote the open disk whose
center is z0 and whose radius is r. Let D = D1(0).

Let BHarm(D) denote the space of bounded harmonic functions on D with the
sup norm.

Proposition 2.1. If D is open, then BHarm(D) is complete.

Proof. Let u1, u2, . . . be a Cauchy sequence in BHarm(D). It follows that this se-
quence converges uniformly to a function u : D → R. It follows that u is continuous
and bounded. It remains to show that u is harmonic. To do so, we use the mean
value property. Accordingly, suppose Dr(z0) ⊆ D. Then,

u(z0) = lim
n→∞

un(z0)

= lim
n→∞

1

2π

∫ 2π

0

un(z0 + reiθ)dθ

=
1

2π

∫ 2π

0

lim
n→∞

un(z0 + reiθ)dθ

=
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.

It follows that u is harmonic. �

3. An operator-theoretic existence proof

Suppose D is a bounded Jordan domain. Suppose f : ∂D → R is piecewise
continuous.

Let σ1, . . . , σn−1, τ1, . . . , τn−1 be pairwise disjoint arcs such that D1 =df D−
⋃

τj
and D2 =df D −

⋃

σj are simply connected. The case when D is bounded by four
curves is illustrated in Figure 1. Let σ =

⋃

j σj , and let τ =
⋃

j τj .

Let φj be a continuous map of D onto Dj that is conformal on D. Thus, each

point of D − σ has exactly one preimage under φ1, and each point of D − τ has
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Figure 1.

exactly one preimage under φ2. The existence of these maps follows from Theorem
2.1 of [5]. Let:

Aj = φ−1
j [∂D]

B1 = φ−1
1 [σ]

B2 = φ−1
2 [τ ]

Let H1 be the harmonic function on D1 determined by the boundary conditions

H1(ζ) =

{

f(ζ) if ζ ∈ ∂D

0 if ζ ∈ σ − ∂D
,

and let H2 be the harmonic function on D2 determined by the boundary conditions

H2(ζ) =

{

f(ζ) if ζ ∈ ∂D

0 if ζ ∈ τ − ∂D
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It follows that H1 and H2 have the integral forms:

H1(z) =
1

2π

∫

A1

P (φ−1
1 (z), ζ)f(φ1(ζ))dsζ

H2(z) =
1

2π

∫

A2

P (φ−1
2 (z), ζ)f(φ2(ζ))dsζ

Let H3 be the harmonic function on D1 determined by the boundary conditions

H3(ζ) =

{

H2(ζ) if ζ ∈ σ

0 otherwise

Thus, H3 has the integral form

H3(z) =
1

2π

∫

B1

P (φ−1
1 (z), ζ)H2(φ1(ζ))dsζ .(3.1)

Finally, let

h = H1 +H3.(3.2)

For each ζ1 ∈ B2, let K(·, ζ1) be the harmonic function on D1 defined by the
boundary conditions

K(ζ, ζ1) =

{

0 ζ 6∈ σ

2πP (φ−1
2 (ζ), ζ1) ζ ∈ σ

Thus, K has the integral form

K(z, ζ1) =

∫

B1

P (φ−1
2 φ1(ζ), ζ1)P (φ−1

1 (z), ζ)dsζ .

Note that φ−1
2 (ζ) is bounded away from B2 as ζ ranges over σ. Accordingly, let

m = max

{
∫

B2

P (φ−1
2 (ζ), ζ1)dsζ1 : ζ ∈ σ

}

.

It follows that m < 2π.
We now define an operator on BHarm(D1). When v is harmonic on D1, let F (v)

denote the function on D1 defined by the equation

F (v)(z) = h(z) +
1

(2π)2

∫

B2

K(z, ζ1)v(φ2(ζ1))dsζ1 .

The key lemma is the following.

Lemma 3.1. F is a contraction map on BHarm(D1). In particular, for all v1, v2 ∈
BHarm(D1),

‖ F (v1)− F (v2) ‖∞≤
m

2π
‖ v1 − v2 ‖∞ .

Proof. We first show that F (v) is a harmonic function on D1 whenever v is. That
is, F maps BHarm(D1) into BHarm(D1). This can be seen by expanding F (v)(z)
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and applying Fubini’s Theorem so as to obtain

F (v)(z) = H1(z)

+
1

2π

∫

B1

[

1

2π

∫

A2

f(φ2(ζ1))P (φ−1
2 φ1(ζ), ζ1)dsζ1

]

P (φ−1
1 (z), ζ)dsζ

+
1

2π

∫

B1

[

1

2π

∫

B2

v(φ2(ζ1))P (φ−1
2 φ1(ζ), ζ1)dsζ1

]

P (φ−1
1 (z), ζ)dsζ

(3.3)

Each summand in Equation (3.3) defines a harmonic function on D1. Thus, F (v)
is harmonic on D1 whenever v is.

We now show that F is a contraction map. It follows from Fubini’s Theorem
that

∫

B2

K(z, ζ1)dsζ1 =

∫

B1

[
∫

B2

P (φ−1
2 φ1(ζ), ζ1)dsζ1

]

P (φ−1
1 (z), ζ)dsζ .

However,
∫

B1

[
∫

B2

P (φ−1
2 φ1(ζ), ζ1)dsζ1

]

P (φ−1
1 (z), ζ)dsζ ≤ m

∫

B1

P (φ−1
1 (z), ζ)dsζ

≤ 2πm.

The conclusion follows. �

So, let u be the fixed point of F .

Lemma 3.2. u extends to a harmonic function on D such that f(ζ) = limz→ζ u(z)
for all ζ ∈ ∂D at which f is continuous.

Proof. By Lemma 3.1, u is harmonic on D1. It follows from Equation (3.3) and
Fubini’s Theorem that

u(z) = F (u)(z) = H1(z) +
1

2π

∫

B1

g(φ1(ζ))P (φ−1
1 (z), ζ)dsζ

where

g(z) =
1

2π

∫

A2

P (φ−1
2 (z), ζ1)f(φ2(ζ1))dsζ1 +

1

2π

∫

B2

P (φ−1
2 (z), ζ1)u(φ2(ζ1))dsζ1 .

Thus, g is the harmonic function on D2 defined by the boundary conditions

g(ζ) =

{

f(ζ) ζ ∈ ∂D

u(ζ) ζ ∈ τ − ∂D

It also follows that u is the harmonic function on D1 defined by the boundary
conditions

u(ζ) =

{

f(ζ) ζ ∈ ∂D

g(ζ) ζ ∈ σ − ∂D

Hence, g(ζ) = u(ζ) for all ζ ∈ σ. Decompose D into the simply connected domains
S1, . . . , Sn as in Figure 2. It follows that u(ζ) = g(ζ) for all ζ ∈ ∂Sj . It then
follows that u(z) = g(z) for all z ∈ Sj . It then follows that u extends to a harmonic
function on D that solves the given Dirichlét problem. �
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Figure 2.

A few moments of reflection will reveal that what the operator F does is the
basic step in the Schwarz alternating method. However, by couching things in the
framework of operator theory, it becomes possible to prove convergence using the
contraction mapping theorem. The proof thus gives more information than would
be obtained by using Harnack’s Principle since it reveals the rate of convergence of
the construction which is important for computation.

4. A closed form

We first perform a procedure similar to kernel iteration. Let

K(1)(z, ζ1) = K(z, ζ1)

K(n+1)(z, ζ1) =

∫

Bn
2

K(z, ζn+1)

n
∏

j=1

K(φ2(ζj+1), ζj)dsζ2 . . . dsζn+1
n = 1, 2, . . .

K(z, ζ1) =

∞
∑

n=1

1

(2π)2n
K(n)(z, ζ1).

Theorem 4.1. Suppose D is a planar Jordan domain with at least two boundary

curves and that f : ∂D → R is piecewise continuous. Let h, Bj, etc. be as in
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Section 3. Then,

uf (z) = h(z) +

∫

B2

K(z, ζ1)h(φ2(ζ1))dsζ1(4.1)

Furthermore,
∣

∣

∣

∣

∣

h(z) +
t

∑

n=1

1

(2π)2n

∫

B2

K(n)(z, ζ1)h(φ2(ζ1))dsζ1 − u(z)

∣

∣

∣

∣

∣

≤
(m

2π

)t+1 2π

2π −m
‖ f ‖∞ .

(4.2)

Proof. Let 0 denote the zero function on D1. Again, let u denote the fixed point
of F . It follows that u is the restriction of uf to D1. Let z ∈ D1. By induction on
t = 1, 2, 3, . . .,

F t+1(0)(z) = h(z) +

t
∑

n=1

1

(2π)2n

∫

B2

K(n)(z, ζ1)h(φ2(ζ1))dsζ1 .

It follows from Lemma 3.1 that

‖ F j(0)− F j+1(0) ‖∞ ≤
(m

2π

)j

‖ F (0) ‖∞

=
(m

2π

)j

‖ h ‖∞ .

By the Maximum Principle, ‖ h ‖∞≤‖ f ‖∞. By a fairly standard calculation,

‖ F t+1(0)− u ‖∞ ≤

∞
∑

n=t+1

(m

2π

)k

‖ f ‖∞

=
(m

2π

)t+1 2π

2π −m
‖ f ‖∞ .

It follows that Equations (4.1) and (4.2) hold whenever z ∈ D1. Hence, by conti-
nuity, they hold for all z ∈ D. �

We mention here that D. Crowdy and J. Marshall have obtained closed formulas
for Green’s function in multiply connected domains. See [3].
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