Available at: https://works.bepress.com/timothy-gregoire/74/
Bibliography
Site Index/Site Quality
(303 entries)


32. Yellow-Poplar Site Index Curves. US Forest Service, Southeastern Forest Experiment Station, Research Notes No. 180, 2 pages.


Spruce in the Lake States. U.S.D.A. Forest Service, North Central Forest Experiment Station Research Note NC-269.


129. Smith, J. H. G. 1985. New Methods and Data are Needed to Improve Height/Age Curves for Natural and Managed Stands. Forestry Chronicle, 61:519-520.


Ecology and Management 106:115-123.


290. Huang, S., Wiens, D. P., Yang, Y., Meng, S. X. and Vanderschaaf. 2009. Assessing the
impacts of species composition, top height and density on individual tree height prediction of

“Evaluation of population-averaged and subject-specific approaches for modeling the dominant
or codominant height of lodgepole pine trees”. *Canadian Journal of Forest Resources* 39:1148-1158.

Columbia. B.C. Ministry of Forests and Range, Forest Science Program, Victoria, B. C. Report
30.

293. Díaz-Maroto, I. J., Fernández-Parajes, J. and Vila-Lameiro, P. and Barcala-Pérez, E.
2010. Site index model for natural stands of Robello oak ( *Quercus pyrenaica* Wild.) in Galicia,
NW Iberian Peninsula. *Ciência Florestal, Santa Maria* 20(1):57-68.

the SBS zone of British Columbia. Unedited Preprint 7pp.

brutia* Ten.) in Thasos Island, Greece. 8pp.

2010. Comparison of methods for estimating heights from complete stem analysis data for *Pinus

Columbia. B.C. Ministry of Forests and Range Forest Science Program, Victoria, B. C. Extension Note 94.

pine and Black spruce plantations using stem analysis data. Northern Journal of Applied Forestry


300. Johansson, T. (2011) “Site index curves for poplar growing on former farmland in

301. Yang, Y. and Huang, S. (2011) “Estimating a Multilevel Dominant Height-Age Model