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parametric Catalan numbers, Stirling numbers, binomial numbers, some other recur-
sive number sequences, and recursive polynomial sequences.

2010 Mathematics Subject Classification: Primary 05A15; Secondary 65B10, 33C45,
39A70, 41A80.
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1. Introduction

Throughout this paper the following notations will be used. Let N be the set of positive
integers, and let N0 = N ∪ {0}. Denote by σ(n) the set of partition of n (n ∈ N) with
k (1 ≤ k ≤ n) parts, represented by 1k12k2 · · ·nkn with k1 + 2k2 + · · · + nkn = n and
k1 + k2 + · · ·+ kn = k, ki ∈ N0. Any given formal power series φ(t) =

∑
n≥0 ant

n over
real number field R may be conveniently written as

φ(t) =
∑
n≥0

[
φ
n

]
tn.

Sometimes we denote
[
φ
n

]
by [tn]φ(t).

Let f and φ be n-th differentiable functions. Then the n-th derivative of their compo-
sition function of f ◦ φ can be presented by the Faà di Bruno’s formula (see, for example,
[4, 15])

Dn ((f ◦ φ)(t))

=
∑
σ(n)

n!

k1!k2! · · · kn!

(
Dkf

)(D1φ(t)

1!

)k1 (D2φ(t)

2!

)k2
· · ·
(
Dnφ(t)

n!

)kn
.

(1)

Assume that f has the inverse, denoted by f−1. Considering (f ◦ φ) and f−1 ◦ (f ◦ φ),
inspired by Hsu [14] and Chou, Hsu, and Shiue [3], we may use Faa di Bruno’s formula to
establish

[
f ◦ φ
n

]
=
∑
σ(n)

(
Dkf(x)

)
x=φ(0)

[
φ
1

]k1 [φ
2

]k2
· · ·
[
φ
n

]kn
k1!k2! · · · kn!

(2)

and

[
φ
n

]
=
∑
σ(n)

(
Dkf−1(x)

)
x=(f◦φ)(0)

[
f ◦ φ

1

]k1 [f ◦ φ
2

]k2
· · ·
[
f ◦ φ
n

]kn
k1!k2! · · · kn!

. (3)

Let f(x) = ex and φ(t) =
∑

n≥0 ant
n, and let bn =

[
f ◦ φ
n

]
. If φ(0) = 0, i.e., a0 = 0,

then (2) and (3) become

bn =
∑
σ(n)

ak11 a
k2
2 · · · aknn

k1!k2! · · · kn!
(4)

and
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an =
∑
σ(n)

(−1)k−1(k − 1)!
bk11 b

k2
2 · · · bknn

k1!k2! · · · kn!
, (5)

respectively.

Let f(x) = xr (r 6= 0) and φ(t) =
∑

n≥0 ant
n, and let bn =

[
f ◦ φ
n

]
. If φ(0) = 0, i.e.,

a0 = 0, then (2) and (3) become

bn =
∑
σ(n,r)

r!
ak11 a

k2
2 · · · aknn

k1!k2! · · · kn!
, (6)

where σ(n, r) is the set of partition of n (n ∈ N) with exact r parts. If φ(0) = 1, i.e.,
a0 = 1, then (2) and (3) become

bn =
∑
σ(n)

r!

k!

ak11 a
k2
2 · · · aknn

k1!k2! · · · kn!
(7)

and

an =
∑
σ(n)

(
1

r

)
k

bk11 b
k2
2 · · · bknn

k1!k2! · · · kn!
, (8)

respectively, where (t)k = t(t− 1) . . . (t− k + 1).
In next section, by selecting different φ and f we will apply (4) to (8) to construct

numerous identities for Catalan numbers, large Schröder numbers, small Schröder numbers,
parametric Catalan numbers, Stirling numbers, binomial numbers, some other recursive
number sequences, and recursive polynomial sequences.

2. Construction of Identities

2.1. Identities for Catalan numbers and Schröder numbers

Catalan numbers,Cn =
(
2n
n

)
/(n+1), form a sequence of integers that occur in the solutions

of many counting problems. The book Enumerative Combinatorics: Volume 2 [21] by Stan-
ley contains a set of exercises of Chapter 6 which describe 66 different interpretations of the
Catalan numbers. Some complementary materials of the exercises of chapter 6 are collected
in [22]. The small and large Schröder numbers are defined by {1, 1, 3, 11, 45, 197, . . .} and
{1, 2, 6, 22, 90, 394, . . .}, respectively. A survey regarding those numbers can be found in
[23] by Stanley. Like Catalan numbers, Schröder numbers occur in various counting prob-
lems, often involving recursively defined objects, such as dissections of a convex polygon,
certain polyominoes, various lattice paths, Lukasiewicz words, permutations avoiding given
patterns, and, in particular, plane trees (see, for example, [7, 17]). Deutsch and Shapiro [5]
present many interesting identities of Catalan numbers. Our intention in this paper is to
construct identities for the Catalan numbers and Schröder numbers by using the approach
shown in (4) and (5) based on Faà di Bruno’s formula.
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Theorem 1. Denote by Cn the Catalan numbers. Then there hold

Cn :=
1

n+ 1

(
2n

n

)
=

1

n+ 1

∑
σ(n)

22n−k

1k1k1!2k2k2! · · ·nknkn!
(1)

and

4n = 2n
∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

(
2j
j

)kj
kj !

. (2)

Furthermore, we have

Cn =
1

n+ 1

∑
[n/2]≤k≤n

(
−1

2

)
k

(−4)n−k

(2k − n)!(n− k)!
. (3)

Proof. Let f(x) = ex and

φ(t) = ln
1√

1− 4t
= −1

2
ln(1− 4t)

=
1

2

(
4t+

1

2
(4t)2 +

1

3
(4t)3 + · · ·

)
.

Then [
φ
n

]
=

1

2n
4n.

Since

(f ◦ φ)(t) =
1√

1− 4t
=
∑
n≥0

(
2n

n

)
tn, (4)

from (4) the coefficient of the nth term can be written as

bn =

(
2n

n

)
=
∑
σ(n)

(
4
2·1
)k1 ( 42

2·2

)k2
· · ·
(
4n

2·n
)kn

k1!k2! · · · kn!

=
∑
σ(n)

4k1+2k2+···+nkn

2k1+k2+···+kn1k1k1!2k2k2! · · ·nknkn!

=
∑
σ(n)

4n

2k1k1k1!2k2k2! · · ·nknkn!
,

which implies (1). Similarly, noting f−1(x) = ln(x) and

Dk ln(x) = (−1)k−1(k − 1)!,
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from (5) we may obtain (2).
Let f(x) = x−1/2 and φ(t) = 1 − 4t. Then (f ◦ φ)(t) can be expanded as (4). Thus,

substituting bn =
(
2n
n

)
and a1 = 1 and a2 = −4 into (7) and noticing k1 = 2k − n and

k2 = n− k, we obtain (3).

Remark 2.1 The combinatorial identities about 4n can be found from many references,
for instance, Chen and Xu [2], Duarte and Guedes de Oliverira [6], Petkovšep, Wilf, and
Zeilberger [16], and Sved [25].
Remark 2.2 The right hand-sides of (1) and (3) give two methods to evaluate the non-
crossing partitions of an n-element set.

Recently, one of the authors define a generalization of Catalan numbers and Catalan
triangles associated with two parameters based on the sequence characterization of Bell-
type Riordan arrays. Among the generalized Catalan numbers, a class of large generalized
Catalan numbers and a class of small generalized Catalan numbers are defined, which can
be considered as an extension of large Schröder numbers and small Schröder numbers,
respectively. The generating function of the parametric Catalan numbers with parameters c
and r is defined in [10] by

dc,r(t) =
1− (c− r)t−

√
1− 2(c+ r)t+ (c− r)2t2

2rt
. (5)

In particular, when (c, r) = (1, 1), (2, 1), and (1, 2), we obtain d1,1(t) =: C(t) =
(1 −

√
1− 4t)/(2t), the classical Catalan function, d2,1(t) =: S(t) = (1 − t −√

1− 6t+ t2)/(2t), the large Schröder function, and

d1,2(t) =: s(t) =
1 + t−

√
1− 6t+ t2

4t
,

the small Schröder function, respectively.

Theorem 2. Denote by Cn the Catalan numbers. Then there hold

Cn =
∑
σ(n)

Πn
j=1

1

jkjkj !

(2kj−1kj

)
kj

kj

(6)

and (
n+ 1

2

)
= n

∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

C
kj
j

kj !
. (7)

Proof. Let f(x) = ex and

φ(t) = ln

(
1−
√

1− 4t

2t

)
.

Then from the Taylor expansion of the above φ(t)

φ(t) =
∑
n≥0

(
2n− 1

n

)
tn

n
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we have [
φ
n

]
=

1

n

(
2n− 1

n

)
for n ≥ 1, which is Sequence A001700 shown in [18]. Since

(f ◦ φ)(t) =
1−
√

1− 4t

2t
=
∑
n≥0

Cnt
n,

by substituting

an =
1

n

(
2n− 1

n

)
and bn = Cn

into (4) and (5), we obtain (6) and (7).

Theorem 3. Denote by Sn the large Schröder numbers. Then there hold

Sn =
∑
σ(n)

Πn
j=1

2k

jkjkj !

(
j−1∑
`=0

(
j − 1

`

)(
j + `

`

))kj
(8)

and

n−1∑
`=0

(
n− 1

`

)(
n+ `

`

)
=
n

2

∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

S
kj
j

kj !
, (9)

where

2

n−1∑
`=0

(
n− 1

`

)(
n+ `

`

)
are elements of sequence A002003, {dn}n≥0 = {0, 2, 8, 38, 192, 1002, . . .}.

Proof. Let f(x) = ex and φ(t) = lnS(t). Then from the Taylor expansion of lnS(t)

φ(t) = 2
∑
n≥1

(
n−1∑
`=0

(
n− 1

`

)(
n+ `

`

))
tn

n

we have

an :=

[
φ
n

]
=

2

n

n−1∑
`=0

(
n− 1

`

)(
n+ `

`

)
for n ≥ 1, which is Sequence A002003 shown in [19]. Since

(f ◦ φ)(t) =
1− t−

√
1− 6t+ t2

2t
=
∑
n≥0

Snt
n,

by substituting an and bn = Sn into (4) and (5), one may have (8) and (9).
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Theorem 4. Denote by sn the small Schröder numbers. Then there hold

sn =
∑
σ(n)

Πn
j=1

1

jkjkj !

(
j−1∑
`=0

(
j

`+ 1

)(
j + `

`

))kj
(10)

and

n−1∑
`=0

(
n

`+ 1

)(
n+ `

`

)
= n

∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

s
kj
j

kj !
, (11)

where

n−1∑
`=0

(
n

`+ 1

)(
n+ `

`

)
are elements of sequence A002002, {en}n≥0 = {0, 1, 5, 25, 129, 681, . . .}.

Proof. Let f(x) = ex and φ(t) = ln s(t). Then from the Taylor expansion of ln s(t)

φ(t) =
∑
n≥1

(
n−1∑
`=0

(
n

`+ 1

)(
n+ `

`

))
tn

n

we have

an :=

[
φ
n

]
=

1

n

n−1∑
`=0

(
n

`+ 1

)(
n+ `

`

)
for n ≥ 1, which is Sequence A002002 shown in [20]. Since

(f ◦ φ)(t) =
1 + t−

√
1− 6t+ t2

4t
=
∑
n≥0

snt
n,

(10) and (11) follow.

Remark 2.3 an shown in Theorem 3 is the number of order-preserving partial self maps
of {1, ..., n}. And bn shown in Theorem 4 is the number of ordered trees with 2n edges,
having root of even degree, non-root nodes of outdegree at most 2 and branches of odd
length.

Another extension of Catalan numbers by parametrization,

Ga,b(t) =
1− at−

√
1− 2at+ (a2 − 4b)t2

2bt2
, (12)

is given by Catlan in[1], which includes Catalan numbers, Motzkin numbers, and small
Schröder numbers as its special cases, but not large Schröder numbers. In fact,
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G2,1 =
1− 2t−

√
1− 4t

2t2
,

G1,1 =
1− t−

√
1− 2t− 3t2

2t2
,

G3,2 =
1− 3t−

√
1− 6t+ t2

4t2

are generating functions of Catalan numbers ({
(

2n
n−1
)
/n}n≥1), Motzkin numbers, and small

Schröder numbers, respectively. Ga,b(t) has the following expansion formula shown in [1]:

Ga,b(t) =
∑
n≥0

bn/2c∑
k=0

(
n

2k

)
Cka

n−2kbk

xn. (13)

We now give a uniform identity of the coefficient sequence of Ga,b(t) in terms of all real
numbers a and b by using Faà di Brune formula.

Theorem 5. Let Ga,b(t) be the function defined as (12) with coefficient sequence

Ga,b;n =

bn/2c∑
k=0

(
n

2k

)
Cka

n−2kbk. (14)

Then we have

Ga,b;n =
∑
σ(n)

Πn
j=1

1

jkjkj !

bj/2c∑
`=0

(
j

2`

)(
2`

`

)
aj−2`b`

kj

(15)

and

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
an−2kbk = n

∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

G
kj
a,b;j

kj !
. (16)

In particular, for (a, b) = (2, 1), (1, 1), and (3, 2), we have

Cn =
∑
σ(n)

Πn
j=1

1

jkjkj !

bj/2c∑
`=0

(
j

2`

)(
2`

`

)
2j−2`

kj

,

Mn =
∑
σ(n)

Πn
j=1

1

jkjkj !

bj/2c∑
`=0

(
j

2`

)(
2`

`

)kj

,

sn =
∑
σ(n)

Πn
j=1

1

jkjkj !

bj/2c∑
`=0

(
j

2`

)(
2`

`

)
3j−2`2`

kj

,

respectively, where Cn, Mn, and sn are Catalan numbers, Motzkin numbers, and small
Schröder numbers.
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Remark 2.4 The number Ga,b;n is called generalized Motzkin number by Z.-W. Sun [24].
In [24] and [26], Sun and Wang et al. studied the congruence properties and combinatorial
properties of Ga,b,n, respectively.

Proof. Consider functions f(x) = ex and

φ(t) = lnGa,b(t),

where Ga,b(t) is presented as (12). Then we have

bn =

[
f ◦ φ
n

]
= Ga,b;n =

bn/2c∑
k=0

(
n

2k

)
Cka

n−2kbk.

To find

an =

[
φ
n

]
,

we compute

Dx lnGa,b(t) =
1

t

(
1√

1− 2at+ (a2 − 4b)t2
− 1

)
.

By denoting

en = [tn]
1√

1− 2at+ (a2 − 4b)t2
,

we have

lnGa,b(t) =

∫
1

t

(
1√

1− 2at+ (a2 − 4b)t2
− 1

)
dt

=

∫ ∑
n≥1

ent
n−1dt =

∑
n≥1

en
n
tn,

which implies

an =
en
n
.

From [1], one may know that

en =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
an−2kbk.

Hence, we finally obtain

an =
1

n

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
an−2kbk.
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(15) and (16) and other special cases follow from (4) and (5) by substituting the above an
and bn properly.

Remark 2.5 Theorem 5 gives a relationship between Theorems 1 and 2 of [1], i.e., the
relationship between the coefficients of the series expansions of functions

1√
1− 2at+ (a2 − 4b)t2

and
1− at−

√
1− 2at+ (a2 − 4b)t2

2bt2
.

The above two functions are studied in [13] by Sprugnoli and one of the authors as two
generating functions of a hitting-time Riordan array. The corresponding combinatorial ex-
planation is also given in the paper.

2.2. Identities for Stirling numbers

Theorem 6. Denote by S(n, r) the Stirling numbers of the second type, where n, r ∈ N.
Then we have

1n + 2n + · · ·+ rn = n
∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

S(r + j, r)kj

kj !
(17)

and

S(n+ r, r) =
∑
σ(n)

Πn
j=1

(
1j + 2j + · · ·+ rj

)kj
jkjkj !

, (18)

or equivalently

S(n, r) =
∑

σ(n−r)

Πn−r
j=1

(
1j + 2j + · · ·+ rj

)kj
jkjkj !

. (19)

Proof. Let f(x) = ex and

φ(t) = ln
1

(1− t)(1− 2t) · · · (1− rt)
.

Then φ(0) = 0 and

(f ◦ φ)(t) =
1

(1− t)(1− 2t) · · · (1− rt)
=
∑
n≥r

S(n, r)tn−r,

i.e.,

bn :=

[
f ◦ φ
n

]
= S(n+ r, r).

Since
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φ(t) = −
r∑
j=1

ln(1− jt)

=
r∑
j=1

∑
n≥1

jn

n
tn =

∑
n≥1

 r∑
j=1

jn

n

 tn,

we have

an :=

[
φ
n

]
=

r∑
j=1

jn

n
=

1n + 2n + · · ·+ rn

n
.

Therefore from (4) and (5) we obtain (18) and (17), respectively.

Remark 2.6 (17) is an extension of the following well-known identity (see P221 of [4])

1n + 2n + · · ·+ rn =
n∑
k=1

k!S(n, k)

(
r + 1

k + 1

)
.

Theorem 7. Let n, r ∈ N. Then there hold(
n

r

)
=
∑
σ(r)

(−1)r−knk

1k1k1!2k2k2! · · · rkrkr!
(20)

and

(−1)r−1n = r
∑
σ(r)

(−1)k−1(k − 1)!

(
n
1

)k1(n
2

)k2 · · · (nr)kr
k1!k2! · · · kr!

. (21)

Proof. Let f(x) = ex and φ(t) = ln(1 + t)n = n ln(1 + t). Note that φ(0) = 0 and

(f ◦ φ)(t) = (1 + t)n =

n∑
r=0

(
n

r

)
tr.

Thus,

br :=

[
f ◦ φ
r

]
=

(
n

r

)
.

Since

φ(t) = n ln(1 + t) =
∑
r≥1

(−1)r−1
n

r
tr,

we have

ar :=

[
φ
r

]
= (−1)r−1

n

r
.

By using (4) and (5), we obtain (20) and (21), respectively.
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Theorem 8. Let φ(t) =
∑

n≥1 ant
n, and let bn = [tn]φ(t)r. Then there holds

bn = r!
∑
σ(n,r)

ak11 a
k2
2 · · · aknn

k1!k2! · · · kn!
, (22)

where k1 + k2 + · · · + kn = r. Particularly, if φ(t) = ln(1 + t) and et − 1, then bn are
s(n, r) and S(n, r), the Stirling numbers of the first kind and the second kind, respectively.
Thus (22) implies

s(n, r) = n!
∑
σ(n,r)

(−1)n−r

1k1k1!2k2k2! · · ·nknkn!
(23)

S(n, r) = n!
∑
σ(n,r)

1

(1!)k1k1!(2!)k2k2! · · · (n!)knkn!
, (24)

where k1 + k2 + · · ·+ kn = r.

Proof. Noting

(φ(t)r)(k) (0) = (r)kδr,k,

where δr,k is the Kronecker symbol, we obtain (22). Since

(ln(1 + t))r =
r!

n!

∑
n≥r

s(n, r)tn

(
et − 1

)
)r =

r!

n!

∑
n≥r

S(n, r)tn,

we immediately have (23) and (24) from (22).

2.3. Identities in q forms

The Gaussian binomial coefficients or q-binomial coefficients are q- analogs of binomial
coefficients defined by (see, for example, [8])[

n
k

]
q

:=

{
(1−qn)(1−qn−1)···(1−qn−k+1)

(1−q)(1−q2)···(1−qk) k ≤ n,
0 k > n.

(25)

Theorem 9. Let n, r ∈ N. Then

q(
r
2)
[
n
r

]
q

=
∑
σ(r)

(−1)r−kΠr
j=1

(
1−qnj

1−qj

)kj
jkjkj !

(26)

and
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qnr − 1

qr − 1
= r

∑
σ(r)

(−1)r−k(k − 1)!q
∑r

i=0 k
(i
2)

i Πr
j=0


[
n
j

]kj
q

kj !

 . (27)

Proof. It is well known that (see [4], p. 118)

Πn−1
j=0 (1 + qjt) =

n∑
j=0

[
n
j

]
q

q(
j
2)tj .

Let f(x) = ex and

φ(t) = ln
(

Πn−1
j=0 (1 + qjt)

)
=

n−1∑
j=0

ln
(
1 + qjt

)

=
∑
m≥1

n−1∑
j=0

(−1)m−1qjm

m
tm

 .

Thus φ(0) = 0 and

ai =

[
φ
i

]
= (−1)i−1

n−1∑
j=0

qji

i
=

(−1)i−1

i

1− qni

1− qi
.

Since

(f ◦ φ)(t) = Πn−1
j=0 (1 + qjt) =

n∑
j=0

q(
j
2)
[
n
j

]
q

tj ,

we have

bi =

[
f ◦ φ
i

]
= q(

i
2)
[
n
i

]
q

for i ≤ n. From formulas (4) and (5),

q(
r
2)
[
n
r

]
q

=

[
f ◦ φ
r

]

=
∑
σ(r)

(−1)
∑r

j=1(j−1)kjΠr
j=1

(
1−qnj

1−qj

)kj
jkjkj !

=
∑
σ(r)

(−1)r−kΠr
j=1

(
1−qnj

1−qj

)kj
jkjkj !
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and

qnr − 1

qr − 1
=

[
φ
r

]
= r

∑
σ(r)

(−1)r−k(k − 1)!q
∑r

i=0 k
(i
2)

i Πr
j=0


[
n
j

]kj
q

kj !

 .

2.4. Identities for the recursive sequences

Let {an}n≥0 be the recursive number sequence of order 2 satisfying

an = ban−1 + can−2 (28)

for n ≥ 2 and with initials a0 and a1. It is known that

∑
n≥0

anx
n =

(a1 − a0b)x+ a0
1− bx− cx2

. (29)

We now give identities of an inspired by (12) of [14].

Theorem 10. Let an be the recursive number sequence defined by (28). Assume its char-
acteristic polynomial 1− bx− cx2 has two distinct roots r1 and r2 and a0 6= 0. Then there
holds

1

n

(
rn1 + rn2 −

(
b− a1

a0

)n)
=
∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

b
kj
j

kj !
, (30)

where

bj =
a0(r1 − b) + a1

r1 − r2
rj1 +

a0(r2 − b) + a1
r2 − r1

rj2. (31)

Particularly, if b = c = 1 and a0 = a1 = 1, then (30) implies

∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

F
kj
j

kj !
=

1

n

((
1 +
√

5

2

)n
+

(
1−
√

5

2

)n)
, (32)

where Fj is the j-th Fibonacci number, which is given by [14].

Proof. Let f(x) = ex and

φ(t) = ln
(a1 − a0b)t+ a0

1− bt− ct2
.

Using Binet formula or Proposition 2.1 of [12] yields
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(f ◦ φ)(t) =
(a1 − a0b)t+ a0

1− bt− ct2
=

(a1 − a0b)t+ a0
(1− r1t)(1− r2t)

= ((a1 − a0b)t+ a0)
∑
n≥0

rn+1
1 − rn+1

2

r1 − r2
tn,

which implies

bn =

[
f ◦ φ
n

]
=
a0(r1 − b) + a1

r1 − r2
rn1 +

a0(r2 − b) + a1
r2 − r1

rn2 .

On the other hand, we may write φ(t) as

φ(t) = ln a0 + ln

(
1− a0b− a1

a0
t

)
− ln(1− r1t)− ln(1− r2t)

= ln (a0)−
∑
n≥1

(
b− a1

a0

)n tn
n

+
∑
n≥1

rn1
tn

n
+
∑
n≥1

rn2
tn

n
,

which gives

an =

[
φ
n

]
=

1

n

(
rn1 + rn2 −

(
b− a1

a0

)n)
, n ≥ 1.

Thus, from (5) one may obtain (30). Particularly, if b = c = 1 and a0 = a1 = 1, then

r1 =
1 +
√

5

2
and r2 =

1−
√

5

2

and formula (30) implies (32).

We now extend Theorem 10 to some recursive polynomial sequences, called generalized
Gegenbauer-Humbert polynomials. A sequence of the generalized Gegenbauer-Humbert
polynomials {P λ,y,Cn (x)}n≥0 is defined by the expansion (see, for example, [4], Gould [9],
and Hsu and two of the authors [11])

Φ(t) ≡ (C − 2xt+ yt2)−λ =
∑
n≥0

P λ,y,Cn (x)tn, (33)

where λ > 0, y andC 6= 0 are real numbers. As special cases of (33), we consider P 1,y,1
n (x)
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as follows (see [11])

P 1,1,1
n (x) = Un(x), Chebyshev polynomial of the second kind,

P 1/2,1,1
n (x) = ψn(x), Legendre polynomial,

P 1,−1,1
n (x) = Pn+1(x), P ell polynomial,

P 1,−1,1
n

(x
2

)
= Fn+1(x), F ibonacci polynomial,

P 1,1,1
n

(x
2

+ 1
)

= Bn(x), Morgan− V oyc polynomial,

P 1,2,1
n

(x
2

)
= Φn+1(x), F ermat polynomial of the first kind,

where a is a real parameter, and Fn = Fn(1) is the Fibonacci number. In particular, if
y = C = 1, the corresponding polynomials are called Gegenbauer polynomials (see [4]).
The generalized Gegenbauer-Humbert polynomial sequences satisfy

P λ,y,Cn (x) = 2x
λ+ n− 1

Cn
P λ,y,Cn−1 (x)− y2λ+ n− 2

Cn
P λ,y,Cn−2 (x) (34)

for all n ≥ 2 with initial conditions

P λ,y,C0 (x) = Φ(0) = C−λ,

P λ,y,C1 (x) = Φ′(0) = 2λxC−λ−1.

[12] establishes the following theorem.

Theorem 11. ([12]) Let x 6= ±
√
Cy. The generalized Gegenbauer-Humbert polynomials

{P 1,y,C
n (x)}n≥0 defined by expansion (33) can be expressed as

P 1,y,C
n (x) = C−n−2

(
x+

√
x2 − Cy

)n+1
−
(
x−

√
x2 − Cy

)n+1

2
√
x2 − Cy

. (35)

Thus we have

P 1,y,1
n (x) = 2xP 1,y,1

n−1 (x)− yP 1,y,1
n−2 (x) (36)

for all n ≥ 2 that satisfies initial conditions

P 1,y,1
0 (x) = Φ(0) = 1,

P 1,y,1
1 (x) = Φ′(0) = 2x.

In addition,

P 1,y,1
n (x) =

(
x+

√
x2 − y

)n+1
−
(
x−

√
x2 − y

)n+1

2
√
x2 − y

. (37)
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Theorem 12. Let P 1,y,1
n (t) be defined by (36), n ∈ N, and let its characteristic polynomial

1− 2xt+ yt2 have two district roots

r1(x) = x+
√
x2 − y and r2(x) = x−

√
x2 − y.

Then there holds

rn1 (x) + rn2 (x)

n
=
∑
σ(n)

(−1)k−1(k − 1)!Πn
j=1

bj(x)kj

kj !
, (38)

where

bj(x) =
1

2
√
x2 − y

r1(x)j+1 − 1

2
√
x2 − y

r2(x)j+1. (39)

Proof. Let f(x) = ex and

φ(t) = ln
1

1− 2xt+ yt2
= ln

1

(1− r1(x)t)(1− r2(x)t)
.

Then (f ◦ φ)(t) = 1/(1− 2xt+ yt2), which implies

bj(x) =

[
f ◦ φ
j

]
=

rj+1
1 (x)

r1(x)− r2(x)
+

rj+1
2 (x)

r2(x)− r1(x)
.

Since

an(x) :=

[
φ
n

]
= [tn] (− ln(1− r1(x)t)− ln(1− r2(x)(t)))

= [tn]

∑
j≥1

r1(x)jtj

j
+
∑
j≥1

r2(x)jtj

j


=

rn1 (x) + rn2 (x)

n
,

from (5) we obtain (38).

2.5. Miscellaneous Application

The techniques presented in the previous subsection can also be applied to some well known
number sequences, such as the number sequences shown in [1],

Ha,b(t) =
1√

1− 2at+ (a2 − 4b)t2
, (40)

which was used in the proof of Theorem 5, where we cited Theorem 1 of [1] to give

en := [tn]Ha,b(t) =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
an−2kbk, (41)
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where the numbers en are called the generalized central trinomial coefficients by Sun in
[24]. Hence, we may establish

Theorem 13. Let Ha,b(t) be the function defined by (40) with coefficients of its ordinary
series expansion shown as (41). Then we have

rn1 + rn2
2n

=
∑
σ(n)

ek11 e
k2
2 · · · eknn

k1!k2! · · · kn!
(42)

and

en =
∑
σ(n)

(−1)k−1(k − 1)!
(r1 + r2)

k1(r21 + r22)k2 · · · (rn1 + rn2 )kn

2k1k1k1!2k2k2! · · ·nknkn!
, (43)

where en are given in (41),

r1 =
a+ 2

√
b

a2 − 4b
and r2 =

a− 2
√
b

a2 − 4b
(44)

with a2 − 4b 6= 0.

Proof. Let f(x) = ex and

φ(t) = ln
1√

1− 2at+ (a2 − 4b)t2
.

Then

bn =

[
f ◦ φ
n

]
= en,

which are shown in (41), and

an =

[
φ
n

]
= [tn]

(
−1

2

)
(ln(1− r1t) + ln(1− r2t))

=
1

2

(
rn1 + rn2

n

)
.

Thus, from (4) and (5), we obtain (43) and (44), respectively.
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