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Abstract

Here we use row sum generating functions and alternating sum generating functions
to characterize Riordan arrays and subgroups of the Riordan group. Numerous appli-
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1 Introduction

Riordan arrays are infinite, lower triangular matrices defined by two generating function.
They form a group, called the Riordan group (see Shapiro et al. [34]). Some other main
results on the Riordan group and its application to combinatorial sums and identities can
be found in [2]–[4], [6]–[7], [11]–[15], [17]–[18], [21]–[33], and [36]–[41].

More formally, consider the set of formal power series (f.p.s.) F = R[[t]]; the order of
f(t) ∈ F , f(t) =

∑∞
k=0 fkt

k (fk ∈ R), is the minimal number r ∈ N such that fr 6= 0.
The set of formal power series of order r is denoted by Fr. It is known that F0 is the
set of invertible f.p.s. and F1 is the set of compositionally invertible f.p.s., that is, the
f.p.s. f(t) for which the compositional inverse f̄(t) exists such that f(f̄(t)) = f̄(f(t)) = t.
Let d(t) ∈ F0 and h(t) ∈ F1; the pair (d(t), h(t)) defines the (proper) Riordan array
D = (dn,k)n,k∈N = (d(t), h(t)), where

dn,k = [tn]d(t)h(t)k (1)

or, in other words, d(t)h(t)k is the generating function for the entries of column k.

1
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Let [f0, f1, f2, . . .]
T be a column vector with f(t) =

∑
n≥0 fnt

n. We then have the
fundamental theorem of Riordan arrays

(d(t), h(t))f(t) = d(t)f(h(t)). (2)

It follows quickly that the usual row-by-column product of two Riordan arrays is also a
Riordan array:

(d1(t), h1(t)) ∗ (d2(t), h2(t)) = (d1(t)d2(h1(t)), h2(h1(t))). (3)

The Riordan array I = (1, t) is everywhere 0 except for all 1’s on the main diagonal; it can
be easily proved that I acts as an identity for this product, that is, (1, t) ∗ (d(t), h(t)) =
(d(t), h(t)) ∗ (1, t) = (d(t), h(t)). Let (d(t), h(t)) be a Riordan array. Then its inverse is

(d(t), h(t))−1 =

(
1

d(h̄(t))
, h̄(t),

)
(4)

where h̄(t) is the compositional inverse of h(t), i.e., (h ◦ h̄)(t) = (h̄ ◦ h)(t) = t. In this way,
the set R of proper Riordan arrays forms a group (see [34]).

Multiplying a matrix by the column vector [1, 1, 1, . . .]T yields the column of row sums
which we denote as R+. Since f(t) = 1/(1 − t) is the corresponding generating function,
then (2) presents the generating function R+ of the row sum sequence of the Riordan array
(d(t), h(t)), i.e.,

R+(t) := (d(t), h(t))
1

1− t
=

d(t)

1− h(t)
. (5)

More briefly this can be written as

R+ =
d

1− h
(6)

Similarly, the alternating sum sequence, R−, called the alternating sum (generating) func-
tion, is

R−(t) := (d(t), h(t))
1

1 + t
=

d(t)

1 + h(t)
. i.e. R− =

d

1 + h
. (7)

Thus R− can be considered as the row sum of the matrix (d, h)(1,−t) = (d,−h). Two well
known properties of Pascal’s triangle are that the row sums are 2n while the alternating row
sums are 0 for n > 0.

It is easy to see that we have, reminiscent of Pythagorean triples,

d =
2R+R−

R+ + R−
, h =

R+ −R−

R+ + R−
. (8)

Thus we can use the sum function R+ and the alternating sum function R− to characterize
Riordan arrays.

Here is a list of several subgroups of R together with their R+ and R− functions
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• The Appell subgroup , A = {(d(t), t)}. The subgroup A is a normal subgroup in the
Riordan group.

R+ =
1 + t

1− t
R−, R− =

1− t

1 + t
R+ and d = R+ − tR+ = R− + tR−. (9)

• The Associated subgroup (or Lagrange subgroup), L = {(1, h(t))}.

R+ =
R−

2R− − 1
, R− =

R+

2R+ − 1
and h (t) =

R+ − 1

R+
=

1−R−

R−
(10)

• The Bell subgroup , B = {(d(t), td(t))} .

R+ =
R−

1− 2tR−
and R− =

R+

1 + 2tR+
and d =

R+

1 + tR+
=

R−

1− tR−
(11)

• The checkerboard subgroup, C = {(d(t), h(t) | d (t) an even function, h (t) an odd function} .

R+(t) = R−(−t). (12)

• The stochastic subgroup, S = {(d(t), h(t))} where their row sums are one, i.e.,

R+ = 1/ (1− t) , R− =
d

2− (1− t)d
=

1− h

(1− t)(1 + h)
. (13)

• The hitting-time subgroup , H = {(th′(t)/h (t) , h(t))} .

R+ =
th′

h(1− h)
and R− =

th′

h(1 + h)
, (14)

which implies

t
DtR

+

R+
−R+ = t

DtR
−

R−
−R−.

• The derivative subgroup, D = {(h′(t), h(t))}

R+ =
h′

1− h
= −Dt ln |1− h(t)| and R− =

h′

1 + h
= Dt ln |1 + h(t)|. (15)

This implies that

2 = e
∫
R+(t)dt + e

∫
R−(t)dt.

We summarize those characterizations of subgroups of Riordan group as follows:

Proposition 1.1 Let R+(t) and R−(t) be the sum and alternating sum function of a Ri-
ordan array (d(t), h(t)). If (d(t), h(t)) is an element of the subgroups of Appell, associated,
Bell, checkboard, stochastic, hitting-time, and derivative, then the characterizations of R+(t)
and R−(t) of (d(t), h(t)) are shown in (9), (10), (11), (12), (13), (14), and (15), respectively.
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As a heuristic principle two pieces of information will determine an element in the Rior-
dan group. As examples we have: d (t) and h (t) , R+ and R−, A (t) and Z (t) (see equations
(17) and (19)). Next are some examples where the first piece is R+ and the second is a sub-

group. For all these examples R+ = C (t) = C = 1 + tC2 = 1−
√
1−4t
2t =

∑
n≥0

1
n+1

(
2n
n

)
tn =

1+t+2t2+5t3+14t4+ · · · , the Catalan numbers. Hence, we obtain various decompositions
of Catalan numbers in terms of k by using different type Riordan arrays. Those Riordan
array decompositions can be applied to other number sequences similarly, which provide a
way to establish identities of Catalan numbers and other numbers.

Appell,
(
1 + t2C3, t

)
=



1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
3 1 0 1 0 0 · · ·
9 3 1 0 1 0
28 9 3 1 0 1

· · ·



Lagrange, (1, tC) =



1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 2 2 1 0 0 · · ·
0 5 5 3 1 0
0 14 14 9 4 1

· · ·


(16)

Bell, (F, tF ) =



1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
2 2 0 1 0 0 · · ·
6 4 3 0 1 0
18 13 6 4 0 1

· · ·


where F =

C

1 + tC
, the GF for the Fine numbers.

Checkerboard,

(
2C(t)C(−t)
C(t) + C(−t)

,
C(t)− C(−t)
C(t) + C(−t)

)
=



1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 4 0 1 0 0 · · ·
6 0 7 0 1 0
0 31 0 10 0 1

· · ·
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Derivative,

(
C

1 + (C − 1)e1−C
,

(C − 1)e1−C

1 + (C − 1)e1−C

)
=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
5
2

3
2 0 1 0 0 0 · · ·

23
3

10
3 2 0 1 0 0

193
8

245
24

25
6

5
2 0 1 0

1571
20

629
20 13 5 3 0 1

· · ·


The first few rows of the Riordan array (C2e−2tC , 1− Ce−2tC) are

Hitting time, (C2e−2tC , 1− Ce−2tC) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
8
3

4
3 0 1 0 0 0 · · ·

8 10
3

5
3 0 1 0 0

376
15

149
15 4 2 0 1 0

731
9

154
5

539
45

14
3

7
3 0 1

· · ·


.

Here, when we explain the Catalan numbers in terms of trees, the kth column in the Appell
array is the numbers of trees with stem height k, while the k in the Lagrange array decom-
position is the degree of the root. The k in the Bell array decomposition is the number of
branches of the root with just one edge.

Despite the fractions appearing in these last two examples often we do get nonnegative
integer entries. For instance if h (t) = tC then the derivative and hitting time matrices are

(B, tC) =


1 0 0 0 0
2 1 0 0 0
6 3 1 0 0 · · ·
20 10 4 1 0
70 35 15 5 1

· · ·

 and

(
B

C
, tC

)
=


1 0 0 0 0
1 1 0 0 0
3 2 1 0 0 · · ·
10 6 3 1 0
35 20 10 4 1

· · ·


with row sum generating functions BC and B respectively. These are of combinatorial
significance since B is the generating function for ordered trees with a marked vertex while
B
C is the generating function for ordered trees with a marked leave. Similar results hold as
long as other kinds of ordered trees which have the same possibilities for updegrees at every
vertex.

An infinite lower triangular array [dn,k]n,k∈N = (d(t), h(t)) is a Riordan array if and only
if a sequence A = (a0 6= 0, a1, a2, . . .) exists such that for every n, k ∈ N

dn+1,k+1 = a0dn,k + a1dn,k+1 + · · ·+ andn,n. (17)
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This is equivalent to

h(t) = tA(h(t)) or t = h̄(t)A(t). (18)

This important result could be called the second fundamental theorem of the Riordan arrays,
see [21, 28, 30] for more information. Here, A(t) is the generating function of the A-sequence.
In [21, 25] it is also shown that a unique sequence Z = (z0, z1, z2, . . .) exists such that every
element in column 0 can be expressed as the linear combination

dn+1,0 = z0dn,0 + z1dn,1 + · · ·+ zndn,n, (19)

or equivalently,

d(t) =
d0,0

1− tZ(h(t))
. (20)

In the next section, we construct the row sum functions and row alternating sum func-
tions of inverse Riordan arrays and multiplication of Riordan arrays as well as the relation-
ship between the sum functions and alternating sum functions and the sequence character-
izations of Riordan arrays. In Section 3, an application of row sums in the construction
of Girard-Waring identities will be given. In addition, several extensions of sum functions
will be developed, which include weighted sum (generating) functions of Riordan arrays and
sum functions of some improper Riordan arrays.

2 Row sum functions and row alternating sum func-
tions of the inverse Riordan array and multiplication
of Riordan arrays

Let (d(t), h(t)) be a Riordan array. Then its inverse is (1/d(h̄(t)), h̄(t)), where h̄(t) is the
compositional inverse of h(t), i.e., (h◦h̄)(t) = (h̄◦h)(t) = t. Denote the sum function and the
alternating sum function of (1/d(h̄(t)), h̄(t)) by S+ ≡ S+(t) and S− ≡ S−(t), respectively.
Then

S+ =
1

(d ◦ h̄)(1− h̄)
and S− =

1

(d ◦ h̄)(1 + h̄)
. (21)

Hence,

1

d ◦ h̄
=

2S+S−

S+ + S−
and h̄ =

S+ − S−

S+ + S−
. (22)

Substituting t = (h̄ ◦ h̄) into the second formula of (8) yields

h̄ =
R+(h̄ ◦ h̄)−R−(h̄ ◦ h̄)

R+(h̄ ◦ h̄) + R−(h̄ ◦ h̄)
.

Comparing the last formula and the second formula of (22), we obtain

R+(h̄)−R−(h̄)

R+(h̄) + R−(h̄)
=

S+(h)− S−(h)

S+(h) + S−(h)
,
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which establishes the relationship between the sum functions and alternating sum functions
of (d(t), h(t)) and its inverse as follows:

R+(h̄)

S+(h)
=

R−(h̄)

S−(h)
. (23)

On the other hand, from the first formula of (8) and the first formula of (22), we have

1

g(f̄)
=

R+(h̄) + R−(h̄)

2R+(h̄)R−(h̄)
=

2S+S−

S+ + S−
.

Noting (23), one may change the right-hand side of the above equation to prove:

Proposition 2.1 Let R+ ≡ R+(t), S+ ≡ S+(t), R− ≡ R−(t), and S− ≡ S−(t). We then
have

2S+S−

S+ + S−
=

S+(h) + S−(h)

2S+(h)R−(h̄)

=
S+(h) + S−(h)

2R+(h̄)S−(h)
. (24)

Note that this implies equation (23).

As an example, if (d, h) = (1, tC), where C ≡ C(t) is the generating function of Catalan
numbers, then h̄(t) = t(1 − t), and C(h̄(t)) = 1/(1 − t). Hence, (1, tC)−1, the inverse of
(1, tC), is (1, t(1 − t)). The sum functions and alternating sum functions of (1, tC) and its
inverse satisfy

R+(h̄) =
1

1− h̄C(h̄)
=

1

1− t
, S+(h) =

1

1− h(1− h)
=

1

1− t
,

R−(h̄) =
1

1 + h̄C(h̄)
=

1

1 + t
, S−(h) =

1

1 + h(1− h)
=

1

1 + t
.

Therefore, (23) and (24) hold.
Denote by R+

1 ≡ R+
1 (t), R+

2 ≡ R+
2 (t), and R+

3 ≡ R+
3 (t) the sum functions of the

Riordan arrays (d, h) ≡ (d(t), h(t)), (g, f) ≡ (g(t), f(t)), and their product (d(g ◦ h), f ◦
h), respectively, and by R−1 ≡ R−1 (t), R−2 ≡ R−2 (t), and R−3 ≡ R−3 (t) the corresponding
alternating sum functions. Then, from the second formula of (8) we have

f =
R+

2 −R−2
R+

2 + R−2
and f ◦ h =

R+
3 −R−3

R+
3 + R−3

. (25)

Substituting t = h(t) into the first formula above and comparing it with the above second
formula yields

R+
2 (h)−R−2 (h)

R+
2 (h) + R−2 (h)

=
R+

3 −R−3
R+

3 + R−3
,

which generates



8 T. X. He and Louis Shapiro

R+
2 (h)

R+
3

=
R−2 (h)

R−3
. (26)

On the other hand, from the first formula of (8), we have

d =
2R+

1 R
−
1

R+
1 + R−1

, g =
2R+

2 R
−
2

R+
2 + R−2

, (27)

and

d(g ◦ h) =
2R+

3 R
−
3

R+
3 + R−3

. (28)

Hence, using formulas (27) and (28), we obtain

2R+
1 R
−
1

R+
1 + R−1

2R+
2 (h)R−2 (h)

R+
2 (h) + R−2 (h)

=
2R+

3 R
−
3

R+
3 + R−3

.

To simplify the last equation, we may write it as

2R+
1 R
−
1

R+
1 + R−1

2R+
2 (h)R−2 (h)

2R+
3 R
−
3

=
R+

2 (h) + R−2 (h)

R+
3 + R−3

.

Since the right-hand of the last equation can be simplified as R+
2 (h)/R+

3 , we obtain the
following results.

Proposition 2.2 With the notations shown above we have

2R+
1 R
−
1 R

+
2 (h)

R+
3 (R+

1 + R−1 )
=

2R+
1 R
−
1 R
−
2 (h)

R−3 (R+
1 + R−1 )

= 1. (29)

Note that this implies equation (26).

As an example, let (d, h) = (C, tC) and (g, f) = (1, tC). Then (d, h)(g, f) = (C, (1 −√
1− 4tC)/2). After some computation we have

R+
2 (h) =

1

1− tC(t)C(tC)
=

2

1 +
√

1− 4tC(t)

= 1 + t + 3t2 + 11t3 + 44t4 + 185t5 + 804t6 + · · · ,

R−2 (h) =
1

1 + tC(t)C(tC)
=

2

3−
√

1− 4tC(t)

= 1− t− t2 − 3t3 − 10t4 − 37t5 − 146t6 + · · · ,

R+
3 =

C

1− tC(t)C(tC)
=

2C

1 +
√

1− 4tC(t)

= 1 + 2t + 6t2 + 21t3 + 80t4 + 322t5 + 1348t6 + · · · ,

R−3 =
C

1 + tC(t)C(tC)
=

2C

3−
√

1− 4tC(t)

= 1− t3 − 6t4 − 30t5 − 142t6 − · · · ,
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where R+
2 (h) and R+

3 are the generating functions of the sequences A127632 and A121988
in [35], respectively. In this case (26) holds because both sides are equal to 1/C. Since

R+
1 =

C

1− tC
= C2, R−1 =

C

1 + tC
= F,

the generating function of Fine numbers, we may easily find that

2R+
1 R
−
1 R

+
2 (h)

R+
3 (R+

1 + R−1 )
=

2R+
1 R
−
1

R+
1 + R−1

R+
2 (h)

R+
3

=
C

C
= 1.

Similarly, we have

2R+
1 R
−
1 R
−
2 (h)

R−3 (R+
1 + R−1 )

= 1

due to (26).
Finally, we discuss the relationship between the sum functions and the sequence charac-

terizations of Riordan arrays. Suppose A ≡ A(t) and Z ≡ Z(t) are the generating functions
of the A-sequence and Z-sequence of a Riordan array (d, h). From (18), we have the A = t/h̄,
where h̄ is the compositional inverse of h. Hence, there is a relation between A and the sum
functions of (d, h)−1. Thus

A =
t(S+ + S−)

S+ − S−
. (30)

From (20), we may express Z as

Z =
(d ◦ h̄)− d0,0

h̄(d ◦ h̄)
.

However, via (21) we have

d ◦ h̄ =
S+ − S−

2S+S−
= h̄(d ◦ h̄),

respectively. Hence,

Z =
S+ + S− − 2d0,0S

+S−

S+ − S−
. (31)

As an example recall that the inverse of Pascal array is(
1

1− t
,

t

1− t

)−1
=

(
1

1 + t
,

t

1 + t

)
,

which has sum function and alternating sum function

S+ = 1 and S− =
1

1 + 2t
,

respectively. Then (30) and (31) give us

A(t) = 1 + t and Z(t) = 1
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for the Pascal array.
Conversely, the generating functions of A-sequence and Z-sequence of a Riordan array

can be used to derive the sum function and alternating sum function of the inverse of the
Riordan array directly, i.e., without computing the inverse array:

S+ =
A− tZ

A− t
and S− =

A− tZ

A + t
. (32)

Equation (32) can be easily proved by observing

A =
t

h̄
, Z =

1

h̄

(
1− 1

d ◦ h̄

)
and the definitions of functions S+ and S−.

Since the A-sequence and Z-sequence of the Pascal array are {1, 1, 0, . . .} and {1, 0, . . .},
respectively, we obtain quickly that the sum function and alternating sum function of the
inverse of Pascal array are

S+(t) =
(1 + t)− t

(1 + t)− t
= 1 and S−(t) =

(1 + t)− t

(1 + t) + t
=

1

1 + 2t
.

3 Applications

3.1 Girard-Waring identities

What can be done by generalizing the ring of integers Z to the ring of polynomials Z [x] or
Z [x, y] or Z [x1, x2, · · · , xn]? There is a survey paper [10] of Henry Gould that includes a
history of the Girard-Waring identities in the rings of polynomials Z [x, y] and Z [x, y, z]. As
an example consider the venerable identity of Girard-Waring.∑

0≤k≤n/2

(−1)
k

(
n− k

k

)
(xy)

k
(x + y)

n−2k
=

xn+1 − yn+1

x− y
, (33)

where xy 6= 0 and x 6= y. This can be put into standard triangular form by reversing and

aerating the rows by replacing
(
n−k
k

)
by
( n+k

2
n−k

2

)
when n ≡ k (mod 2) and 0 otherwise. We

now look at the Riordan matrix

(
1

1 + xyt2
,

(x + y) t

1 + xyt2

)
=

1 0 0 0 0 0
0 1 (x + y) 0 0 0 0

−1 (xy) 0 1 (x + y)2 0 0 0

0 −2 (xy) (x + y) 0 1 (x + y)3 0 0

(xy)2 0 −3 (xy) (x + y)2 0 1 (x + y)4 0

0 3 (xy)2 (x + y) 0 −4 (xy) (x + y)3 0 1 (x + y)5

· · ·


Notice that for any Riordan array that we can find row sums by multiplying by the column
vector [1, 1, 1, · · · ]T with the generating function 1/ (1− z) . Then we have
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(g, f)
1

1− z
= g · 1

1− f
= R+, the generating function for the row sums.

For the Girard-Waring matrix the row sum generating function is(
1

1− xyz2
,

(x + y) z

1 + xyz2

)
1

1− z
=

1

1− xyz2
· 1

1− (x+y)z
1+xyz2

=
1

1 + xyz2 − z (x + y)

=
1

(1− xz) (1− yx)

=
x

x− y
· 1

1− xz
− y

x− y
· 1

1− yz

=
1

x− y

∑
n≥0

(
xn+1 − yn+1

)
zn.

Equating coefficients of zn finishes the proof.
We now look at a more general case by considering the Riordan arrays (1/(1+at2), bt/(1+

at2)) with b2 ≥ 4a > 0 thus obtaining a generalized Binet formula. The entries of the
Riordan array are

dn,k = [tn]
bktk

(1 + at2)k+1

= [tn]
∑
j≥0

(
j + k

j

)
(−at2)jbktk

= [tn]
∑
j≥0

(
j + k

j

)
(−a)jbkt2j+k

=

{ ( n+k
2

n−k
2

)
(−1)(n−k)/2a(n−k)/2bk, when n ≡ k (mod 2),

0, when n 6≡ k (mod 2).
(34)

For the last step we set j = (n − k)/2 when n ≡ k(mod 2). Hence, the row sum of
(1/(1 + at2), bt/(1 + at2)) = (dn,k)n,k≥0 is

n∑
k=0

dn,k =
∑

0≤k≤n,n≡k (mod 2)

(n+k
2

n−k
2

)
(−1)(n−k)/2a(n−k)/2bk

=

n/2∑
k=0

(−1)k
(
n− k

k

)
akbn−2k. (35)

Here the last step results from the transform (n− k)/2→ k when n ≡ k (mod 2).
The generating function of the row sums of (1/(1 + at2), bt/(1 + at2)) can be presented

as
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(
1

1 + at2
,

bt

1 + at2

)
1

1− t
=

1
1+at2

1− bt
1+at2

=
1

at2 − bt + 1
. (36)

Since b2 ≥ 4a > 0, we have

at2 − bt + 1 = a(t− t1)(t− t2),

where

t1 =
b +
√
b2 − 4a

2a
, t2 =

b−
√
b2 − 4a

2a
. (37)

Hence, (36) can be written as

(
1

1 + at2
,

bt

1 + at2

)
1

1− t
=

1

a(t− t1)(t− t2)

=
1

a(t1 − t2)

(
1

t− t1
− 1

t− t2

)
=

1

at2(t1 − t2)

1

1− t
t2

− 1

at1(t1 − t2)

1

1− t
t1

=
1

at2(t1 − t2)

∑
n≥0

(
t

t2

)n

− 1

at1(t1 − t2)

∑
n≥0

(
t

t1

)n

=
∑
n≥0

1

a(t1 − t2)

(
1

tn+1
2

− 1

tn+1
1

)
tn. (38)

From the last expression of the row sum generating function and the row sums shown in
(35), we obtain the identity

n/2∑
k=0

(−1)k
(
n− k

k

)
akbn−2k =

1

a(t1 − t2)

(
1

tn+1
2

− 1

tn+1
1

)
, (39)

where t1 and t2 are given in (37).

We note that if we set a = 1 and b = −2x then the row sums are the Chebyshev

polynomials of the second kind. We now have t1 = −2x+
√
4x2−4

2 = −x +
√
x2 − 1 and t2

= −x−
√
x2 − 1 and t−11 = t2, t

−1
2 = t1. so

Un (x) =

(
x +
√
x2 − 1

)n+1 −
(
x−
√
x2 − 1

)n+1

2
√
x2 − 1

.

Similarly, if we set b = −2x, a = −1 and 2, then the corresponding row sums are the
Pell polynomials, {Pn+1}n≥0, and the Fermat polynomials of the first kind, {Fn+1}n≥0,
respectively:
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Pn+1(x) =

(
x +
√
x2 + 1

)n+1 −
(
x−
√
x2 + 1

)n+1

2
√
x2 + 1

,

Fn+1(x) =

(
x +
√
x2 − 2

)n+1 −
(
x−
√
x2 − 2

)n+1

2
√
x2 − 2

.

The above polynomials can be sorted into the class of the generalized Gegenbauer-Humbert
polynomials (see, for example, [9] and [19]). Their expressions constructed by using Binet
formula can be found from [20].

We now can extend identity (39) to Z [x, y, z] or higher cases using a similar argument.

Let the polynomial at3 + ct2 − bt + 1 have three distinct roots t1 = 1/x, t2 = 1/y, and
t3 = 1/z. Then a three variable Girard-Waring identity is

∑
0≤k≤n/3

(
n− 2k

k

)
(xyz)k(x + y + z)n−3k

=
xn+2

(x− y)(x− z)
+

yn+2

(y − x)(y − z)
+

zn+2

(z − x)(z − y)
(40)

with x, y, z distinct and nonzero and xy + yz + zx = 0. This can be proved using row sums
as follows:

(
1

1 + at3
,

bt

1 + at3

)
1

1− t
=

1
1+at3

1− bt
1+at3

=
1

1− bt + at3

with roots t1, t2, and t3 satisfying t1+t2+t3 = 0. Then let t1 = 1/x, t2 = 1/y, and t3 = 1/z
so that a = −xyz and b = x + y + z.

In general, for integer ` ≥ 2, by using the technique shown in [16], we have identities

∑
0≤k≤n/`

(
n− (`− 1)k

k

)
(−1)`+1

(
Π`

i=1xi

)k(∑̀
i=1

xi

)n−`k

=
∑̀
i=1

xn+`−1
i

Π`
j=1,j 6=i(xi − xj)

, (41)

where the xi (1, 2, . . . , `) are distinct and Π`
i=1xi 6= 0 and∑

0≤i1<i2<···<i`−j≤`

xi1xi2 · · ·xi`−j
= 0

for j = 1, 2, . . . , ` − 2. Obviously, when ` = 2 and 3, we have identities (33) and (40),
respectively.
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3.2 Expected value (generating) function

To compute R+ we multiply by the column vector [1, 1, 1, . . .]T giving us the total number
relative to a parameter k. To find the expected value relative to k we use the column vector
[0, 1, 2, 3, . . .]T with the corresponding generating function t/(1−t)2. We define RE = RE(t)
as

RE := (d(t), h(t))
t

(1− t)2
=

d(t)h(t)

(1− h(t))2
=

dh

(1− h)2
. (42)

Thus RE is very interesting on its own. For the Catalan matrix (1, tC) we have RE = tC3

so the total root degree for ordered trees with n edges is

3

2n + 1

(
2n + 1

n− 1

)
=

3n

n + 2
Cn

and the average degree is 3n/(n + 2)→ 3 as n→∞.
It is easy to see that

d =
(R+)2

R+ + RE
and h =

RE

R+ + RE
. (43)

Thus we can use the sum function R+ and the expected value function RE to characterize
a Riordan array.

We also have the following inverse relationship between (R+, R−) and (R+, RE).

R− =
(R+)2

R+ + 2RE
RE =

(R+)2 −R+R−

2R−
. (44)

Therefore, from the characterizations of subgroups of Riordan group characterized by
(R+, R−), we may obtain the characterizations of the subgroups with respect to (R+, RE)
by using the relationship (44). Here are a few examples:

• The Appell subgroup, a normal subgroup of the Riordan group, defined by A =
{(d(t), t)}, has the characterization:

R+ =
1− t

t
RE , RE =

t

1− t
R+, and d = R+(1− t) = RE (1− t)2

t
. (45)

• The Associated subgroup (or Lagrange subgroup), defined by L = {(1, h(t))}, has the
characterization:

(R+)2 −R+ −RE = 0 and h (t) =
R+ − 1

R+
=

RE

(R+)2
(46)

• The Bell subgroup, defined by B = {(d(t), td(t))} , has the characterization:

RE = t(R+)2 and d =
R+

1 + tR+
=

RE

t(RE + R+)
(47)
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For an example, by using the Pascal matrix we have

RE =
t

(1− 2t)2
=
∑
n≥0

n2n−1tn.

The most striking of these results is that (d, h) is a Bell matrix if and only if RE = t(R+)2.
For instance, consider the Catalan matrix

(C, tC) =


1 0 0 0 0
1 1 0 0 0
2 2 1 0 0 · · ·
5 5 3 1 0
14 14 9 4 1

· · ·

 .

Then R+ = C2 so RE = tC4. The sequence

C4 ←→
(

1, 4, 14, 48, 165, . . . ,
4

2n + 4

(
2n + 4

n

)
, . . .

)
goes back at least to Cayley [1] and we discuss two settings.

Consider triangulations of a regular (n + 3)-gon. We mark a vertex, V , and an internal
diagonal, d, that has V as an end point. [For instance color d red.] The number of such
triangulations has the generating function tC4. This tC4 also counts the number of incom-
plete binary trees with one red edge on the sequence of consecutive left edges leaving the
root (see Figure 1)

Figure 1: incomplete binary trees with one red edge on the sequence of
consecutive left edges leaving the root

Since

[tn]tC4 =
4

2(n− 1) + 4

(
2(n− 1) + 4

n− 1

)
=

2

n + 1

(
2n + 2

n− 1

)
and
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[tn]C2 =
2

2n + 2

(
2n + 2

n

)
=

1

n + 1

(
2n + 2

n

)
,

we have that the average length of consecutive left edges from the root is

[tn]tC4

[tn]C2
=

2n

n + 3
→ 2

as n→∞.
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