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Two types of symbolic summation formulas are reformulated using an
extension of Mullin-Rota’s substitution rule in [1], and several applica-
tions involving various special formulas and identities are presented as
illustrative examples.
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1 Introduction

The recent paper [2] by He, Hsu, and Shiue has shown that, as an application
of the substitution rule based on Mullin-Rota theory of binomial enumeration
(cf. [1]), the symbolization of generating functions may yield more than a dozen
symbolic summation formulas involving delta operator ∆ and D. Here let us
recall that ∆ (difference operator) andD (differentiation operator) together with
E (shift operator) are usually defined for all f(t) ∈ C∞ (the class of infinitely
differentiable real functions in R = (−∞,∞)) via the relations
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∆f(t) = f(t+ 1)− f(t), Df(t) =
d

dt
f(t) = f ′(t), Ef(t) = f(t+ 1).

Consequently they satisfy some simple symbolic relations such as

E = 1 + ∆, E = eD, ∆ = eD − 1, D = logE = log(1 + ∆),

where the unity 1 serves as an identity operator such that 1f(t) = f(t). Also,
for any real or complex number α, we may define Eαf(t) = f(t + α) with
E0 = D0 = ∆0 = 1. In addition, an operator T is called a shift-invariant
operator (see, for example, [1]) if it commutes with the shift operator E , i.e.,

TEα = EαT,

where Eαf(t) = f(t + α) and E1 ≡ E. Clearly, the differentiation operator
D and the difference operator ∆ are shift-invariant operators. An operator Q
is called a delta operator if it is shift-invariant and Qt is a non-zero constant.
Obviously, both D and ∆ are delta operators.

What we wish to show is that the two types of symbolic summation formulas
expanded in [2] may be reformulated using an extension of Mullin-Rota’s substi-
tution rule so that they could apply to more cases than those given previously.
Accordingly we will consider some new applications, and present several exam-
ples and identities involving some special number sequences such as Bernoulli,
Catalan, Stirling, harmonic numbers and the generalized harmonic numbers. In
addition, we shall show that the formal power series can be recovered from the
corresponding symbolic summation formulas by substituting a certain chosen
function.

2 Two basic theorems

Let Q be a delta operator, and let F be the ring of formal power series in the
variable t, over the same field, then [1] proved that there exists an isomorphism
from F onto the ring

∑
of shift-invariant operators, which carries

g(x) =
∑
k≥0

ak
k!
xk into g(Q) ≡ G(x,Q) :=

∑
k≥0

ak
k!
Qk.

The above rule is called Mullin-Rota’s substitution rule.
Denote by G(x, y, z) a rational function in three variables x, y, and z.

In particular, G(x, y, 1) and G(x, 1, 1) denote rational functions in two vari-
ables and one variable, respectively. In what follows we always assume that
F (x) ≡

∑∞
k=0 fkx

k is a formal power series. Then we shall use Mullin-Rota’s
substitution rule to establish the following results.
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Theorem 2.1 Suppose that for given power series F (x) there is an expression
or a sum formula of the form∑

k≥0

fkx
k = G(x, ex, eαx), (2.1)

where the parameter α 6= 0 is a real or complex number. Then the substitution
x 7→ D yields a symbolic summation formula for every f ∈ C∞ evaluated at
t = 0, namely ∑

k≥0

fkD
kf(0) = G(D,E,Eα)f(0). (2.2)

Moreover, (2.2) implies (2.1) as a particular case with f(t) = ext.

Theorem 2.2 Suppose that for given power series F (x) there is an expression
or a sum formula of the form∑

k≥0

fkx
k = G(x, log(1 + αx), (1 + αx)β), (2.3)

where α and β are real parameters with αβ 6= 0. Then the substitution x 7→ 1
α∆

yields a symbolic summation formula of the form

∑
k≥0

fk

(
1
α

)k
∆kf(0) = G(

∆
α
,D,Eβ)f(0). (2.4)

Moreover, (2.4) implies (2.3) as a particular case with f(t) = (1 + αx)t.

Proof: Theorems 2.1 and 2.2 can be proved similarly. Since both D and ∆
are delta operators, so that (2.2) and (2.4) as symbolizations of (2.1) and (2.3),
respectively, can be justified by a similar argument of Mullin-Rota’s substitution
rule (see [1] or [2]). More precisely, both (2.1) and (2.3) are identities in the
variable x, and that there is an isomorphism between the ring of shift-invariant
operators and the ring of formal power series in x. Hence, (2.2) and (2.4) are
obtained accordingly. It remains to show that the choices f(t) ≡ f(t;x) = ext

and f(t) ≡ f(t;x) = (1 + αx)t will respectively lead (2.2) and (2.4) to recover
(2.1) and (2.3). For the particular choice f(t) = ext we see that the right-hand
side (RHS) of (2.2) can be written as follows

RHS of (2.2) = G(D, eD, eαD)f(0)

=
∑
k≥0

fkD
kf(0) =

∑
k≥0

fkD
kextt=0

=
∑
k≥0

fkx
k = G(x, ex, eαx).

Also, the left-hand side (LHS) of (2.2) with f(t) = ext gives
∑
k≥0 fkx

k. Hence,
(2.1) is implied by (2.2).
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The implication (2.4) ⇒ (2.3) with f(t) = (1 + αx)t can be verified in
a similar manner, in which it suffices to observe that the LHS of (2.4) with
f(t) = (1 + αx))t gives

∑
k≥0 fkx

k, and that the RHS of (2.4) gives

G

(
∆
α
, log(1 + ∆), (1 + ∆)β

)
f(0)

=
∑
k≥0

fk

(
∆
α

)k
f(0) =

∑
k≥0

fk

[(
∆
α

)k
(1 + αx)t

]
t=0

=
∑
k≥0

fkx
k = G

(
x, log(1 + αx), (1 + αx)β

)
,

which completes the proof.

The following two examples may further illustrate the second halves of the
theorems. First, using (2.2) with F (x) = eax =

∑
k≥0(ax)k/k! with x 7→ D

yields the summation formula
∑
k≥0 a

kDkf(0)/k! = f(a), which implies eax =∑
k≥0(ax)k/k! as a special case with f(t) = ext. Similarly, if (2.3) is given with

F (x) = − log(1−x) =
∑
k≥1 x

k/k!, then the corresponding summation formula
(2.4) with the mapping x 7→ (−∆) is

∑
k≥1(−1)k+1 ∆kf(0)/k = f ′(0), which

implies
∑
k≥1 x

k/k! = − log(1− x) as a special case with f(t) = (1− x)t.
The technique presented in the above theorems can be considered as ex-

tensions of (Mullin-Rota’s) substitution rule. For brevity, formulas (2.2) and
(2.4) may be simply called D-type formula and ∆-type formula respectively.
These formulas obviously provide generalizations of the sum formulas for single
power series. As may be observed, substantially all the operational formulas
(O2) − (O12), as displayed in [2], together with the symbolic formulas express-
ing Dm (or ∆m) in terms of ∆k’s (or Dk’s) are particular consequences of (2.2)
and (2.4), respectively.

It may be noted that the operational formula given in Example 5.14 of [2]
of the form

(O13) :
∞∑
k=0

km∆m+1f(k) = (−1)m+1Am(E)f(0)

is incorrect, where Am(x) denotes the mth degree Eulerian polynomial given by
the expression

A0(x) = 1 and Am(x) =
m∑
k=1

A(m, k)xk (m ≥ 1),

with A(m, 0) = 0 and

A(m, k) =
k∑
j=0

(−1)j
(
m+ 1
j

)
(k − j)m (1 ≤ k ≤ m).
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A(m, k) are known to be the Eulerian numbers (cf. Comtet [3, p. 243-5]). In
fact, taking f(t) to be a polynomial of degree ≤ m with m ≥ 1, we see that
the LHS of (O13) gives zero, while the RHS differs from zero. Actually (O13) is
obtained from the symbolization of Euler’s formula

∞∑
k=0

kmxk = αm(x) =
Am(x)

(1− x)m+1
(|x| < 1),

by the substituting x 7→ E, where E = 1 + ∆ is not a delta operator inasmuch
as Et = t+ 1 is not a non-zero constant.

A valid symbolization should be made by the substitution x 7→ (−∆), so
that Euler’s formula yields a special ∆- type formula of the form

(O14) :
∑
k≥0

(−1)kkm∆kf(m+1) = Am(−∆)f(0) =
m∑
k=1

A(m, k)(−1)k∆kf(0).

Taking f(t) = 1/(1 + t) into (O14), we find (cf. (5.17) of [2])

1
m+ 2

∞∑
k=0

km
(
m+ k + 2
m+ 2

)−1

=
m∑
k=1

A(m, k)/(k + 1) (m ≥ 1).

Curiously enough, this correct summation is also obtainable from the incorrect
formula (O13). This might suggest that (O13) could still be valid under certain
restrictive conditions.

One may recover Euler’s formula from (O14) by substituting f(t) = (1−x)t.
Indeed, for the function f(t), we have ∆kf(m + 1) = (1 − x)m+1(−x)k and
∆kf(0) = (−x)k. Thus [Am(−∆)(1 − x)t]t=0 =

∑m
k=1A(m, k)(−1)k∆kf(0) =∑m

k=1A(m, k)xk = Am(x), and (O14) becomes
∑
k≥0 k

m(1−x)m+1xk = Am(x),
which is the Euler’s formula

∑
k≥0 k

mxk = Am(x)/(1− x)m+1 for x 6= 1.

3 Application of (2.2) and (2.4)

In addition to those generating functions already investigated in [2], let us now
consider some other generating functions or power series expansions with closed
sums as follows (cf. Wilf [4]).

(i)
∑
k≥0

4kB2k

(2k)! x
2k = x cothx, where B2k are Bernoulli numbers.

(ii)
∑
k≥0

φr(k)xk

k! = ex
∑r
k=0

∆kφr(0)
k! xk, where φr(x) is a rth degree polyno-

mial (cf. Jolley [5, p. 218]).

(iii)
∑
k≥0 Ckx

k = 1
2x

(
1−
√

1− 4x
)
, where Ck = 1

k+1

(
2k
k

)
are Catalan num-

bers.

(iv)
∑
k≥1Hkx

k = 1
1−x log 1

1−x , where Hk are harmonic numbers defined by
Hk =

∑k
j=1 1/j for k ≥ 1 with H0 = 0.
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(v)
∑
k≥2

1
kHk−1x

k = 1
2

(
log 1

1−x

)2

(vi)
∑
k≥0

(
2k+r
k

)
xk = 1√

1−4x

(
1−
√

1−4x
2x

)r
(r ≥ 0)

(vii)
∑
k≥1H(k, r)xk = 1

1−x

(
log 1

1−x

)r+1

, where H(k, r) are generalized har-
monic numbers (cf. [6]) defined byH(k, r) =

∑
1≤n0+n1+···+nr≤k 1/(n0n1 · · ·nr)

for k ≥ 1 and r ≥ 0 with H(0, r) = 0. It is obvious that H(k, 0) = Hk.

(viii)
∑
k≥0

r(2k+r−1)!
k!(k+r)! xk =

(
1−
√

1−4x
2x

)r
, which includes (iii) as a special case

when r = 1.

Evidently, (i) and (ii) are of the form (2.1), and (iii)-(viii) of the form (2.3).
Consequently (i) and (ii) should lead to special D-type formulas, and (iii)-(viii)
to ∆-type formulas. Indeed, making use of (2.2) we easily find∑

k≥0

4kB2k

(2k)!
D2kf(0) = D

E + E−1

E − E−1
f(0).

Notice that (E − E−1)D2kf(0) = f (2k)(1) − f (2k)(−1). Thus we can obtain a
symbolic summation formula of the form

∑
k≥0

4kB2k

(2k)!
[f (2k)(1)− f (2k)(−1)] = f ′(1) + f ′(−1). (3.1)

Similarly, utilizing formulas (2.2) and (2.4) one may find that (ii)-(viii) yield
7 special symbolic summation formulas as follows

∑
k≥0

φr(k)
k!

f (k)(0) =
r∑

k=0

∆kφr(0)
k!

f (k)(1) (3.2)

∑
k≥0

(
−1
4

)k
Ck∆k+1f(0) = 2

[
f

(
1
2

)
− f(0)

]
(3.3)

∑
k≥1

(−1)kHk∆kf(0) = −f ′(−1) (3.4)

∑
k≥2

(−1)k

k
Hk−1∆kf(0) =

1
2
f ′′(0) (3.5)

∑
k≥0

(−1)k

22k+r

(
2k + r

k

)
∆k+rf(0) = (E1/2 − 1)rf

(
−1

2

)
, (3.6)

∑
k≥1

(−1)kH(k, r)∆kf(0) = (−1)r+1f (r+1)(−1), (3.7)

∑
k≥0

(−1)kr(2k + r − 1)!
4kk!(k + r)!

∆k+rf(0) = 2
r∑
j=0

(−1)r−j
(
r

j

)
f

(
j

2

)
, (3.8)
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where the RHS of (3.6) may be written in the explicit form

(E1/2 − 1)rf
(
−1

2

)
=

r∑
j=0

(−1)r−j
(
r

j

)
f

(
j − 1

2

)
. (3.9)

More precisely, (3.2)-(3.8) are obtained from (ii)-(vi) by the substitutions
x 7→ D, x 7→

(
− 1

4∆
)
, x 7→ (−∆), x 7→

(
− 1

4∆
)
, x 7→ (−∆), and x 7→

(
− 1

4∆
)

respectively.

4 Some convergence conditions

Here we provide a list of conditions for the absolute convergence of the series
expansions in (3.1)-(3.8).

formula convergence condition

(3.1) limk→∞
∣∣f (2k)(±1)

∣∣1/k < π2

(3.2) limk→∞
∣∣f (k)(0)/k!

∣∣1/k < 1

(3.3) ∆kf(0) = O
(
k

1
2−ε
)

(ε > 0)

(3.4) ∆kf(0) = O
(
(1/k)1+ε

)
(ε > 0)

(3.5) ∆kf(0) = O ((1/k)ε) (ε > 0)

(3.6) limk→∞
∣∣∆kf(0)

∣∣1/k < 1

(3.7) ∆kf(0) = O
(
(1/k)1+ε

)
(ε > 0)

(3.8) ∆kf(0) = O
(
k

1
2−ε
)

(ε > 0)

The convergence conditions shown above can be justified by the aid of
Cauchy’s root test and the comparison test. Notice that there is an estimate
for Bernoulli numbers, viz. (cf. Jordan [7, §82])∣∣∣∣ B2k

(2k)!

∣∣∣∣ < 1
12(2π)2k−2

(k ≥ 0).

It follows that upper limit

limk→∞

∣∣∣∣ B2k

(2k)!

∣∣∣∣1/k ≤ 1
4π2
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(Actually, Euler’s famous formula for Bernoulli numbers, (−1)k+1B2k/(2k)! =
2ζ(2k)/(2π)2k implies the limit of (B2k/(2k)!)1/k equals to 1/(4π2), so that the
convergence condition for (3.1) implies that

limk→∞

∣∣∣∣4kB2k

(2k)!
f (2k)(±1)

∣∣∣∣1/k < 1.

Hence the absolute convergence of the series in (3.1) follows from the root test.
Moreover, notice that limk→∞ |φr(k)|1/k = 1 and that

lim
k→∞

∣∣∣∣ 1
22k+r

(
2k + r

k

)∣∣∣∣1/k = 1,

where the limit follows from an application of Stirling’s asymptotic formula
n! ∼ (n/e)n

√
2πn as n → ∞. Thus the convergence conditions for (3.2) and

(3.6) also follow from the root test.
Evidently the convergence conditions for (3.3), (3.4), (3.5), (3.7), and (3.8)

are justified by the following asymptotic relations, respectively

Ck =
1

k + 1

(
2k
k

)
∼ 4k/(k

√
kπ),

H(k, r) ∼ log k (r = 0, 1, . . .),
r(2k + r − 1)!
k!(k + r)!

∼ 4kk−3/2,

as k →∞. Here, the second estimation for r ≥ 1 comes from [6, (3.2)].

5 Examples- Various identities and series sums

Certainly, each of the formulas (3.1)-(3.8) may be used to yield a variety of
particular identities or series sums via suitable choices of f(t). Here we will
present a number of selective examples to illustrate the applications of (3.1)-
(3.8).
Example 1 Let n be an odd positive integer, and take f(t) = tn, (n ≥ 1). Then
we have

f ′(1) = f ′(−1) = n, f (2k)(±1) = ±n2k,

where we use the following falling factorial notation xr (sometimes also denoted
(x)r), i.e., xr = x(x− 1)r−1(r ≥ 1) with x0 = 1. Thus using (3.1) we get

[n/2]∑
k=0

4kB2k

(
n

2k

)
= n. (5.1)

Example 2 Let λ be a real number with λ 6= 0. Then a much more general
identity of the form

8



m∑
k=0

42kB2k

(
λ+ 2k − 1

2k

)(
2λ+ 2m+ 2k
2m− 2k + 1

)
= 2λ

(
2λ+ 2m+ 1

2m

)
(5.2)

can be obtained from (3.1) by taking f(t) = Cλn(t) with n = 2m+1, where Cλn(t)
is the nth degree Gegenbauer polynomial given by the generating function

(1− 2tx+ x2)−λ =
∞∑
k=0

Cλk (t)xk (λ 6= 0). (5.3)

Indeed, a few simple properties of Cλn(t) may be deduced from (5.3), namely
(cf. Magnus-Oberhettinger-Soni [8, §5.3])

Cλn(1) =
(2λ)n̄

n!
, Cλn(−t) = (−1)nCλn(t),

(
d

dt

)m
Cλn(t) = 2mλm̄Cλ+m

n−m(t),

where we have used the raising factorial notation xr̄ (sometimes also denoted
(x)r or 〈x〉r), i.e., xr̄ = x(x+ 1)r−1 (r ≥ 1) with x0̄ = 1.

Consequently, the fact that (3.1) implies (5.2) is confirmed by easy compu-
tations with the aid of the above mentioned properties.

For the particular choices λ = 1 and λ = 1/2, we see that (5.2) gives the
following identities respectively

m∑
k=0

42kB2k

(
2m+ 2k + 2

4k + 1

)
= 2
(

2m+ 3
3

)
, (5.4)

m∑
k=0

B2k

(
4k
2k

)(
2m+ 2k + 1

4k

)
=
(

2m+ 2
2

)
. (5.5)

Example 3 Recall that Stirling numbers of the first and second kind may be
defined by the following equations respectively.

(−1)n−k
[
n
k

]
:=

1
k!
[
Dktn

]
t=0

,

{
n
k

}
:=

1
k!
[
∆ktn

]
t=0

. (5.6)

Here we have adapted the notations due to Knuth (cf. [4] and [9]), where[
n
k

]
denotes the signless Stirling numbers of the first kind, i.e., the number

of permutations of n objects having k cycles. Now, taking φr(t) = tr we have

∆kφr(0) = k!
{
r
k

}
, and we see that (3.2) yields the formula

∑
k≥0

kr

k!
f (k)(0) =

r∑
j=0

{
r
j

}
f (j)(1). (5.7)

This formula implies several interesting special identities.
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(1) Taking f(t) = et, we get

1
e

∑
k≥0

kr

k!
=

r∑
j=0

{
r
j

}
= ω(r). (5.8)

This is the well-known formula of Dobinski for the Bell number ω(r).
(2) Choosing f(t) = 1 + t+ · · ·+ tm (m ≥ 1) we find f (k)(0) = k! for k ≤ m,

and f (k)(0) = 0 for k > m, and moreover,(
d

dt

)j
(1 + t+ · · ·+ tm)|t=1 = j!

[(
j

j

)
+
(
j + 1
j

)
+ · · ·+

(
m

j

)]
= j!

(
m+ 1
j + 1

)
.

Thus (5.7) gives

m∑
k=0

kr =
r∑
j=0

j!
(
m+ 1
j + 1

){
r
j

}
. (5.9)

This is the classical formula for arithmetic progression of higher order.
(3) Taking f(t) =

∑
k≥0(tx)k = (1− tx)−1 with |tx| < 1, we find f (k)(0) =

k!xk and f (k)(1) = k!xk(1− x)−k−1. Thus (5.7) yields

∑
k≥0

krxk =
r∑
j=0

j!
{
r
j

}
xj(1− x)−j−1 (|x| < 1). (5.10)

This is Euler’s formula for the arithmetic-geometric series.

(4) Take f(t) = tm so that f (k)(0) = (−1)m−kk!
[
m
k

]
. We have to compute

f (k)(1). By (5.6), it is easily found that

[
Dktm

]
t=1

=
[
Dk(t+ 1)m

]
t=0

= (t+ 1)t=0

[
Dktm−1

]
t=0

+
(
k

1

)[
Dk−1tm−1

]
t=0

= (−1)m−k−1k!
[
m− 1
k

]
+ (−1)m−kk(k − 1)!

[
m− 1
k − 1

]
= k!

(
(−1)m−k−1

[
m− 1
k

]
+ (−1)m−k

[
m− 1
k − 1

])
.

Thus (5.7) gives

m∑
k=1

(−1)m−kkr
[
m
k

]
=

r∑
j=1

j!
{
r
j

}(
(−1)m−j−1

[
m− 1
j

]
+ (−1)m−j

[
m− 1
j − 1

])
.

(5.11)
This may be compared with the known identity
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m∑
k=1

kr
(
m

k

)
=

r∑
j=1

j!
{
r
j

}(
m

j

)
2m−j . (5.12)

which is also obtained from (5.7) by taking f(t) = (1 + t)m.
(5) Choosing f(t) = tm̄ := t(t+1) · · · (t+m−1) (m ≥ 1 is arbitrarily fixed),

we have

f(t) =
∑
k≥1

∣∣∣∣[ m
k

]∣∣∣∣ tk =
∑
k≥1

m!
k!

(
m− 1
k − 1

)
tk.

Hence, f (k)(0) = k!
∣∣∣∣[ m

k

]∣∣∣∣ and from (4)

f (j)(1) =
∑
k≥1

m!
k!

(
m− 1
k − 1

)[
Djtk

]
t=1

=
∑
k≥1

j!
m!
k!

(
m− 1
k − 1

)(
(−1)k−j−1

[
k − 1
j

]
+ (−1)k−j

[
k − 1
j − 1

])
.

Therefore, (5.7) gives

∑
k≥1

kr
∣∣∣∣[ m

k

]∣∣∣∣ =
r∑
j=1

∑
k≥1

j!
m!
k!

(
m− 1
k − 1

){
r
j

}(
(−1)k−j−1

[
k − 1
j

]
+ (−1)k−j

[
k − 1
j − 1

])
.

(6) Take f(t) = t(t − an)n−1, the Abel polynomial with n ≥ 1, so that
f (k)(0) = k(n− 1)k−1(−an)n−k and

f (j)(1) = Dj
[
t(t− an)n−1

]
t=1

=
[
t(n− 1)j(t− an)n−j−1

]
t=1

+
[
j(n− 1)j−1(t− an)n−j

]
t=1

= (n− 1)j−1(1− an)n−j−1 [(n− j) + j(1− an)]
= nj(1− aj)(1− an)n−j−1.

Thus (5.7) yields

∑
k≥1

kr

(k − 1)!
(n− 1)k−1(−an)n−k =

r∑
j=0

nj(1− aj)
{
r
j

}
(1− an)n−j−1.

Example 4 Let α ∈ R. We have

∆k

(
t+ α

n

)
=
(
t+ α

n− k

)
(n ≥ k ≥ 0).

Thus, taking f(t) =
(
t+α
n

)
we have ∆kf(0) =

(
α
n−k
)
. Consequently, (3.3) yields

the identity
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n−1∑
k=0

(−1)k

4k(k + 1)

(
2k
k

)(
α

n− k − 1

)
= 2

[(
α+ 1/2

n

)
−
(
α

n

)]
. (5.13)

Example 5 For f(t) = tn (n ≥ 1) we have ∆kf(0) = k!
{
n
k

}
, so that formulas

(3.3)-(3.5), and (3.7) give four identities as follows

n−1∑
k=0

(−1)kk!
22k

(
2k
k

){
n

k + 1

}
=
(

1
2

)n−1

, (5.14)

n∑
k=1

(−1)kk!Hk

{
n
k

}
= (−1)nn, (5.15)

n∑
k=2

(−1)k(k − 1)!Hk−1

{
n
k

}
=
{

1 if n = 2
0 if n > 2 . (5.16)

n∑
k=1

(−1)kk!H(k, r)
{
n
k

}
= (−1)nnr+1 (r ≥ 1) (5.17)

Example 6 Taking f(t) =
(
m+t
n

)
, (m > n ≥ 1), we find

d

dt

(
m+ t

n

)
=

(m+ t)n

n!

(
1

m+ t
+

1
m− 1 + t

+ · · ·+ 1
m− n+ 1 + t

)
.

Consequently, we have

f ′(−1) =
(m− 1)n

n!

(
1

m− 1
+

1
m− 2

+ · · ·+ 1
m− n

)
=

(
m− 1
n

)
(Hm−1 −Hm−n−1) (H0 = 0).

Thus, using (3.4) we get

n∑
k=1

(−1)k−1Hk

(
m

n− k

)
=
(
m− 1
n

)
(Hm−1 −Hm−n−1) (H0 = 0). (5.18)

Example 7 Take f(t) = 1/(t+m) with m ≥ 2. We have

∆kf(0) =
(−1)kk!(m− 1)!

(m+ k)!
=

(−1)k

m

(
m+ k

m

)−1

.

Consequently formulas (3.4), (3.5), (3.7), and (3.3) can be used to obtain
four convergent series sums as follows.
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∑
k≥1

(
m+ k

m

)−1

Hk =
m

(m− 1)2
, (5.19)

∑
k≥1

(
m+ k + 1

m

)−1
Hk

k + 1
=

1
m2

, (5.20)

∑
k≥1

(
m+ k

m

)−1

H(k, r) =
m

(m− 1)r+2
(r ≥ 1) (5.21)

∑
k≥1

(
m+ k + 1

m

)−1
Ck
4k

=
2

2m+ 1
. (5.22)

In particular, for m = 2 we see that (5.20), (5.21), and (5.22) yield the sums

∑
k≥1

Hk

(k + 1)(k + 2)(k + 3)
=

1
8
, (5.23)

∑
k≥1

H(k, r)
(k + 1)(k + 2)

= 1 (r ≥ 0) (5.24)

∑
k≥1

(
2k
k

)
4k(k + 1)(k + 2)(k + 3)

=
1
5
. (5.25)

Example 8 As may be observed, the case r = 0 of (3.6) gives the following pair
of identities for f(t) = tn and f(t) =

(
α+t
n

)
(α ∈ R) respectively.

n∑
k=0

(−1)k
(2k)!
22kk!

{
n
k

}
=
(
−1
2

)n
, (5.26)

n∑
k=0

(
2k
k

)(
−1
4

)k (
α

n− k

)
=
(
α− 1

2

n

)
. (5.27)

In particular, (5.27) with α = n implies

n∑
k=0

(
2k
k

)(
−1
4

)k (
n

k

)
=
(
n− 1

2

n

)
= 2−2n

(
2n
n

)
. (5.28)

This identity appears in Sofo [10, p.22]. Surely, other identities of similar types
may be obtained from (3.6) for smaller r’s.
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