Numerical approximation to $\zeta(2n+1)$

Tian-Xiao He, *Illinois Wesleyan University*

Michael J. Dancs
Numerical Approximation to $\zeta(2n + 1)$

Michael J. Dancs and Tian-Xiao He
Department of Mathematics and Computer Science
Illinois Wesleyan University
Bloomington, IL 61702-2900, USA

May 11th, 2005

Abstract
In this short paper, we establish a family of rapidly converging series expansions for $\zeta(2n + 1)$ by discretizing an integral representation given by D. Cvijović and J. Klinowski in [2]. The proofs are elementary, using basic properties of the Bernoulli polynomials.

AMS Subject Classification: 11M06, 11Y35, 41A10, 65D15.

Key Words and Phrases: Riemann zeta function, Bernoulli polynomial, Dirichlet series, Apéry’s constant.

1 Introduction
In [1], Apéry proved the irrationality of $\zeta(3)$ by using a rapidly converging infinite series. No one has yet discovered a similar expression for $\zeta(2n + 1)$ when $n \geq 2$, but there have appeared several recent papers (for example, [3], [4], and [5]) devoted to finding other types of series expansions for the zeta function at odd-integer arguments. The typical result is an exponentially convergent series, and thus insufficient to prove irrationality.

We establish a new series expansion of $\zeta(2n + 1)$ by discretizing the integral representations given in [2]. Our results similar in quality to the references cited previously, but our method has the advantage of being completely elementary. It may also be possible to use our methods in...
evaluating other Dirichlet series, and we intend to return to this problem in the future.

Throughout this paper, \(\log t \) denotes the natural logarithm of \(t \), and \(B_m(t) \) is the \(m \)th Bernoulli polynomial. We henceforth assume that \(n \) is a fixed positive integer, and note that implied constants may depend on \(n \).

Our main result is:

Theorem 1.1 For any positive integer \(n \), there is a rational number \(A_n \) such that

\[
\zeta(2n+1) = \alpha_n \left[A_n - \frac{2n+1}{2} \left(\log \frac{3}{2} + 2^{-2n} \log \frac{1}{2} \right) + Z_n \right], \tag{1.1}
\]

where

\[
\alpha_n = \frac{(-1)^{n+1} 2^{2n+2} \pi^{2n}}{(1-2^{-2n})(2n+1)!} \tag{1.2}
\]

\[
Z_n = \sum_{r=1}^{\infty} \left[(\zeta(2r) - 1) (2^{2r} - 1) \int_{0}^{1/2} B_{2n+1}(t)t^{2r-1}dt \right]. \tag{1.3}
\]

Specifically, if \(\Delta^k \) denotes the \(k \)th iterate of the ordinary forward difference operator, and

\[
f_n(x) = \frac{1 - (3/2)^{x+1}}{(x+1)^2} - \frac{1 - 2^{x+1}}{2^{2n}(x+1)^2}, \tag{1.4}
\]

then

\[
A_n = \int_{-1/2}^{1/2} \frac{B_{2n+1}(t)}{1 - 2t} dt + \frac{1}{2} \int_{1/2}^{3/2} \frac{B_{2n+1}(t)}{t} dt + n(n+1) \Delta^{2n-1} f_n(0). \tag{1.5}
\]

In light of this result, we may approximate \(\zeta(2n+1) \) in terms of \(Z_n \). We have the following result regarding the rate of convergence:

Theorem 1.2 Let \(Z_n(k) \) denote the \(k \)th partial sum of the series in (1.3). Then \(Z_n = Z_n(k) + O(k^{-1} 2^{-2k}) \).
2 Proofs of the Main Results

From the identity \(\tan x = \cot x + 2 \cot 2x \) and the well-known formula

\[
\pi \cot(\pi z) = z^{-1} - 2 \sum_{r=1}^{\infty} \zeta(2r) z^{2r-1}, \quad z \notin \mathbb{Z},
\] (2.1)

one readily obtains, for \(0 < t < \frac{1}{2} \),

\[
\tan(\pi t) = \frac{2}{\pi} \sum_{n=1}^{\infty} (2^{2n} - 1) \zeta(2n) t^{2n-1},
\] (2.2)

and this remains valid when \(t = 0 \). From Section 4 of [1], we have

\[
\zeta(2n+1) = (-1)^{n+1} \frac{(2\pi)^{2n+1}}{(1 - 2^{-2n})(2n+1)!} \int_0^{1/2} B_{2n+1}(t) \tan(\pi t) dt,
\] (2.3)

and inserting (2.2) gives

\[
\zeta(2n+1) = \alpha_n \lim_{\delta \to 1/2} \int_0^{\delta} \sum_{r=1}^{\infty} (2^{2r} - 1) \zeta(2r) B_{2n+1}(t) t^{2r-1} dt.
\] (2.4)

Since \(\delta < \frac{1}{2} \), the series converges uniformly on \(0 \leq t \leq \delta \). Thus

\[
\zeta(2n+1) = \alpha_n \lim_{\delta \to 1/2} \sum_{r=1}^{\infty} (2^{2r} - 1) \zeta(2r) \int_0^{\delta} B_{2n+1}(t) t^{2r-1} dt.
\] (2.5)

Let \(J_r(\delta) \) be the integral in (2.5), and write

\[
\sum_{r=1}^{\infty} (2^{2r} - 1) \zeta(2r) J_r(\delta)
\] (2.6)

\[
= \sum_{r=1}^{\infty} 2^{2r} J_r(\delta) - \sum_{r=1}^{\infty} J_r(\delta) + \sum_{r=1}^{\infty} [\zeta(2r) - 1] (2^{2r} - 1) J_r(\delta)
\] (2.7)

\[
= W_n(\delta) - X_n(\delta) + Y_n(\delta).
\] (2.8)
When $0 \leq \delta \leq \frac{1}{2}$, $J_r(\delta) = O(r^{-1}2^{-2r})$, and hence the series for X_n converges uniformly on this interval. The rth term of Y_n is dominated by $\zeta(2r) - 1$, hence this series converges uniformly on the same interval.

As we remarked previously, the infinite series $Z_n = Y_n(1/2)$ is the chief ingredient in our approximation of $\zeta(2n + 1)$. The next two lemmas are devoted to evaluating W_n and X_n.

Lemma 2.1 With W_n and X_n defined as above,

$$\lim_{\delta \to 1/2^-} W_n(\delta) = \frac{2n + 1}{2} \int_0^{1/2} B_{2n}(t) \log(1 - 4t^2) dt \quad (2.9)$$

$$X_n(1/2) = \frac{2n + 1}{2} \int_0^{1/2} B_{2n}(t) \log(1 - t^2) dt. \quad (2.10)$$

Proof. Integrating $J_r(\delta)$ by parts, we have

$$W_n(\delta) = \frac{1}{2} B_{2n+1}(\delta) \sum_{r=1}^{\infty} \frac{(2\delta)^{2r}}{r} - \frac{2n + 1}{2} \sum_{r=1}^{\infty} \int_0^{\delta} (2t)^{2r} B_{2n}(t) dt \quad (2.11)$$

$$= -\frac{1}{2} B_{2n+1}(\delta) \log(1 - 4\delta^2) - \frac{2n + 1}{2} \sum_{r=1}^{\infty} \int_0^{\delta} \frac{(2t)^{2r}}{r} B_{2n}(t) dt. \quad (2.12)$$

The odd Bernoulli polynomials have $1/2$ as a root, hence the first term tends to zero as $\delta \to 1/2^-$. The series

$$\sum_{r=1}^{\infty} \frac{(2t)^{2r}}{r} B_{2n}(t)$$

converges uniformly when $0 \leq t \leq \delta < 1/2$. We thus have

$$\lim_{\delta \to 1/2^-} W_n(\delta) = -\frac{2n + 1}{2} \lim_{\delta \to 1/2^-} \int_0^{\delta} B_{2n}(t) \sum_{r=1}^{\infty} \frac{(2t)^{2r}}{r} dt,$$

and this establishes (2.9). The proof of (2.10) is similar.
Numerical Approximation to \(\zeta(2n+1) \)

The domain of \(W_n \) can thus be extended so that \(W_n \) is left-continuous at \(\frac{1}{2} \). With this in mind, we now simplify the above integrals.

Lemma 2.2 There exist rational numbers \(p_n \) and \(q_n \) such that

\[
W_n(1/2) = \frac{1}{2} \int_{-1/2}^{1/2} \frac{B_{2n+1}(t)}{1-2t} dt - p_n - \frac{2n+1}{2^{2n+1}} \log \frac{1}{2}. \tag{2.13}
\]

\[
X_n(1/2) = -\frac{1}{2} \int_{1/2}^{3/2} \frac{B_{2n+1}(t)}{t} dt - q_n + \frac{2n+1}{2} \log \frac{3}{2}. \tag{2.14}
\]

Proof. From (2.9), we have

\[
W_n(1/2) = \frac{2n+1}{2} \int_0^{1/2} B_{2n}(t) \log(1-2t) dt + \frac{2n+1}{2} \int_0^{1/2} B_{2n}(t) \log(1+2t) dt. \tag{2.15}
\]

Again integrating by parts, the first term becomes

\[
\int_0^{1/2} \frac{B_{2n+1}(t)}{1-2t} dt, \tag{2.16}
\]

and the second term is

\[
-\int_0^{1/2} \frac{B_{2n+1}(t)}{1+2t} dt = -\int_{-1/2}^{0} \frac{B_{2n+1}(-x)}{1-2x} dx \tag{2.17}
\]

\[
= \int_{-1/2}^{0} \frac{B_{2n+1}(x) + (2n+1)x^{2n}}{1-2x} dx. \tag{2.18}
\]

Hence

\[
W_n(1/2) = \int_{-1/2}^{1/2} \frac{B_{2n+1}(t)}{1-2t} dt + (2n+1) \int_{-1/2}^{0} \frac{x^{2n}}{1-2x} dx. \tag{2.19}
\]
(2.13) follows upon letting $x = \frac{1}{2} - y$ and evaluating the resulting integral. We can write

$$p_n = \frac{n(2n+1)}{2^n} \Delta^{2n-1} \frac{1 - 2^{x+1}}{(x+1)^2} \bigg|_{x=0},$$

(2.20)

where Δ is the forward difference operator: $(\Delta f)(x) = f(x + 1) - f(x)$. The proof of (2.14) is similar, with

$$q_n = n(2n+1) \Delta^{2n-1} \frac{1 - (3/2)^{x+1}}{(x+1)^2} \bigg|_{x=0}.$$

(2.21)

Theorem 1.1 follows immediately upon inserting the results of this lemma, along with the given expressions for p_n and q_n, into equation (2.8).

Turning to Theorem 1.2, we have already seen that the integral appearing in (1.3) is $O(r^{-1}2^{-2r})$. To estimate $\zeta(2r) - 1$, we use the representation

$$\zeta(s) = \frac{1}{1 - 21-s} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s},$$

(2.22)

which is valid when $\Re(s) > 0$. The alternating series is $1 + O(2^{-2r})$, and from this we can deduce that $\zeta(2r) - 1 = O(2^{-2r})$. Hence

$$Z_n = Z_n(k) + O\left(\sum_{r=k+1}^{\infty} r^{-1}2^{-2r}\right)$$

(2.23)

and this establishes Theorem 1.2

References

