Skip to main content
Article
Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys
Journal of Applied Physics
  • J. B. Restorff, United States Navy
  • M. Wun-Fogle, United States Navy
  • K. B. Hathaway, G/J Associates
  • A. E. Clark, Clark Associates
  • Thomas A. Lograsso, Iowa State University
  • G. Petculescu, University of Louisiana at Lafayette
Document Type
Article
Publication Date
1-19-2012
DOI
10.1063/1.3674318
Abstract
This paper presents a comparative study on the tetragonal magnetostriction constant,λγ,2, [ = (3/2)λ100] and magnetoelastic coupling, b1, of binary Fe100-xZx (0 < x < 35, Z = Al, Ga, Ge, and Si) and ternary Fe-Ga-Al and Fe-Ga-Ge alloys. The quantities are corrected for magnetostrains due to sample geometry (the magnetostrictive form effect). Recently published elastic constant data along with magnetization measurements at both room temperature and 77 K make these corrections possible. The form effect correction lowers the magnetostriction by ∼10 ppm for high-modulus alloys and by as much as 30 ppm for low-modulus alloys. The elastic constants are also used to determine the values of the magnetoelastic coupling constant, b1. With the new magnetostriction data on the Fe-Al-Ga alloy, it is possible to show how the double peak magnetostriction feature of the binary Fe-Ga alloy flows into the single peak binary Fe-Al alloy. The corrected magnetostriction and magnetoelastic coupling data for the various alloys are also compared using the electron-per-atom ratio, e/a, as the common variable. The Hume-Rothery rules link thee/a ratio to the regions of phase stability, which appear to be intimately related to the magnetostriction versus the solute concentration curve in these alloys. Using e/a as the abscissa tends to align the peaks in the magnetostriction and magnetoelastic coupling for the Fe-Ga, Fe-Ge, Fe-Al, Fe-Ga-Al, and Fe-Ga-Ge alloys, but not for the Fe-Si alloys for which the larger atomic size difference may play a greater role in phase stabilization. Corrections for the form effect are also presented for the rhombohedral magnetostriction,λɛ,2, and the magnetoelastic coupling, b2, of Fe100-xGax (0 < x < 35) alloys.
Comments

The following article is from Journal of Applied Physics 111 (2012): 023905 and may be found at http://dx.doi.org/10.1063/1.3674318.

Rights
Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Copyright Owner
American Institute of Physics
Language
en
File Format
application/pdf
Citation Information
J. B. Restorff, M. Wun-Fogle, K. B. Hathaway, A. E. Clark, et al.. "Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys" Journal of Applied Physics Vol. 111 Iss. 21 (2012) p. 023905
Available at: http://works.bepress.com/thomas_lograsso/91/