Skip to main content
Article
Human microvasculature fabrication using thermal inkjet printing technology
Biomaterials (2009)
  • Xiaofeng Cui, University of California - San Diego
  • Thomas Boland, University of Texas at El Paso
Abstract
The current tissue engineering paradigm is that successfully engineered thick tissues must include vasculature. As biological approaches alone, such as VEGF, have fallen short of their promises, one may look for an engineering approach to build microvasculature. Layer-by-layer approaches for customized fabrication of cell/scaffold constructs have shown some potential in building complex 3D structures. With the advent of cell printing, one may be able to build precise human microvasculature with suitable bio-ink. Human microvascular endothelial cells (HMVEC) and fibrin were studied as bio-ink for microvasculature construction. Endothelial cells are the only cells to compose the human capillaries and also form the entire inner lining of cardiovascular system. Fibrin has been already widely recognized as tissue engineering scaffold for vasculature and other cells, including skeleton/smooth muscle cells and chondrocytes. In our study, we precisely fabricated micron-sized fibrin channels using a drop-on-demand polymerization. This printing technique uses aqueous processes that have been shown to induce little, if any, damage to cells. When printing HMVEC cells in conjunction with the fibrin, we found the cells aligned themselves inside the channels and proliferated to form confluent linings. The 3D tubular structure was also found in the printed patterns. We conclude that a combined simultaneous cell and scaffold printing can promote HMVEC proliferation and microvasculature formation.
Publication Date
2009
Citation Information
Xiaofeng Cui and Thomas Boland. "Human microvasculature fabrication using thermal inkjet printing technology" Biomaterials Vol. 30 Iss. 31 (2009)
Available at: http://works.bepress.com/thomas_boland/1/