Romberg Tiburon Center (RTC) Theater Repurpose 2017

Thomas Fowler, IV
Romberg Tiburon Center

Theater Repurpose
The Architecture and Architectural Engineering Departments are two of the five departments that comprise the College of Architecture & Environmental Design.
The other departments are:

City & Regional Planning
Construction Management
Landscape Architecture

Copyright © 2017 by AeD Press/Architecture Department, College of Architecture and Environmental Design, California Polytechnic State University, San Luis Obispo. All rights reserved. Printed in the United States of America.
No part of this book may be reproduced in any form without written permission of the copyright owners. All images in this book have been reproduced with the knowledge and prior consent of the artists concerned. And no responsibility is accepted by the producer, publisher, or printer for any infringement of copyright or otherwise arising from the contents of this publication.

ISBN 978-0-9835817-8-9
Printed and bound by Cal Poly Print & Copy.

This book was first published in the United States of America and printed by Cal Poly Print and Copy.
Copies of this book are available for sale at lulu.com

Publication Design: Brandon Carson, Katie Eberle, Kevin Lee, Kristen Pang
Publication Editors: Thomas Fowler and Kevin Dong

For information regarding permission(s) write to:
California Polytechnic State University
College of Architecture and Environmental Design
Architecture Department
1 Grand Avenue
San Luis Obispo, CA 93407
Architecture
Architectural Engineering

2017 Design Collaboratory
College of Architecture and Environmental Design
Cal Poly, San Luis Obispo, CA

Thomas Fowler
Kevin Dong
The team that worked on San Francisco State University’s Romberg Tiburon Center (RTC) for Environmental Studies was composed of a talented group of undergraduate and graduate students. We thank the RTC and John Kern for providing the opportunity to research and redesign this Building 54 Theater Project. The Project will restore the historical theater, provide RTC with an inspiring presentation space, and commemorate the history of the site.

The Design Collaboratory is an award winning (NCARB Prize, Auto Desk Grant and national student design competition recognition), multi-disciplinary group of undergraduate and graduate students, and faculty (from architecture and architectural engineering, joined occasionally by planning, construction management and civil engineering), that work directly with industry partners in developing building design projects. Professors Dong and Fowler have collaborated on these types of projects, which use interdisciplinary student groups, for more than 10 years. They bring more than 30 years of professional experience which provides avenues for insightful research and innovative design proposals, and leverage approximately 40 years of teaching experience to mentor and enable students to create holistic design solutions.

We have enjoyed seeing how much students learn in their interactions with one another, with the RTC, and with us. They have grown as designers, problem solvers, and innovators by solving “real world” building design challenges since they worked directly with the building user, John Kern.

Sincerely,

Professor Kevin Dong
Professor Thomas Fowler
Professor Thomas Fowler, DPACSA, NCARB, AIA

The Director of the Graduate Program of Architecture and a Professor of Architecture.

Thomas’ teaching responsibilities include third and fourth year design and building technology courses, working with a range of four and fifth year independent study students and has been co-teaching as part of the Collaboratory Building Design Studio since 2007. Prior to beginning his teaching career at Cal Poly, Thomas worked with a range of architecture firms in New York City and Washington, DC for over a 13 year period. His work was highly collaborative with a range of disciplines on small to large scaled building types.

Professor Kevin Dong, PhD, SE

The Associate Dean of Administration of the College of Architecture and Environmental Design and Professor of Architectural Engineering.

Kevin’s teaching responsibilities range from 2nd year technology classes through graduate structural systems and seismic engineering courses, and has been co-teaching the Collaboratory Building Design Studio with Tom since 2007. Prior to beginning his teaching career at Cal Poly, Kevin practiced holistic design with Ove Arup & Partners (ARUP) for 13 years, starting as an Arup Fellow in London and then moving to the San Francisco office. During his tenure with ARUP he worked on numerous projects nationally and internationally that required collaboration and integration of all disciplines from design inception through construction and occupancy.
I am a fourth year Architecture student and I was presented the opportunity to take part in this integrated studio which is usually reserved for graduate students. It was my first time designing for an existing building and I have enjoyed and disliked the challenges the existing structure has presented. Not only has this project exposed me to schematic design but also the administration side of the design process, I enjoyed speaking to the researchers at the RTC and being able to design to their requests.

Melvin Fuentes
Los Angeles, CA

As an Architectural Engineering student with an Art History minor I greatly enjoyed working on an interdisciplinary project that combined my interests in structures and history. The RTC Theater project presented a unique set of design criteria and constraints that required creative thinking and teamwork to solve. Overall, this experience has been rewarding and fulfilling and I look forward to working on more historic retrofit projects in the Bay Area next year.

Brandon Carson,
Alamo, CA

I am a graduate student in Architecture at Cal Poly, San Luis Obispo. Working on with the Romberg Tiburon Center has presented unique challenges and creative opportunities in architecture. Integrated structural engineering, history and architecture has brought new perspective and insight to the work I have done. This collaborative studio has been interesting and dynamic learning experience I will continue to carry with me in my professional career.

Katie Eberle
South San Francisco, CA

I am a fourth year Architectural Engineering student at Cal Poly, and I am very grateful to have been part of the RTC Theater project. Working alongside Architects, my fellow ARCE’s, and a history major has been an eye opening experience for me, and has given me so much knowledge about group collaboration and interdisciplinary efforts that I will be able to bring with me into industry next year. Learning more about the architectural design process was a highlight of the project for me, and something that I found very valuable.

Justine Neves
Santa Cruz, CA

Meet the Team
I’m a fourth year Architectural Engineering student at Cal Poly. I collaborated on this project because of my fascination with historical preservation and retrofitting. I was challenged with analyzing the existing structure for structural problems, and developing cost-effective solutions. It was a great experience to collaborate with multiple disciplines and formulate creative ideas.

Kristen Pang
Honolulu, HI

I’m one of four Architectural Engineering students on this project. I was seeking opportunities that would expose me to work I can’t find at school, and fortunately I found RTC Tiburon. I was entranced by RTC’s deep history and I felt very optimistic with its prospects for the future. I explored how to analyze the existing structural systems in conjunction with structural and ADA codes to assist the Architectural design. Overall, I am very thankful for the opportunity, and excited for how this theater can potentially change.

Kristen Pang
Honolulu, HI

I am a first-year graduate student in Architecture at Cal Poly with an undergraduate degree in Architecture from India. As an international student, working in a collaborative design studio with students from different disciplines like ARCE and History has widened my knowledge base and provided me with a different perspective of approaching a design challenge. I thoroughly enjoyed working on this project and look forward to more such challenges in future.

Sridhevi Vaidyanathan
India

I’m graduating June 2017 with a B.A. in History and minors in English and Music. I will be attending the University of Chicago in the fall to complete my Masters in Social Science. As the project historian, I dug deep into the rich history of the RTC and enjoyed the rare treasure of the DeFries Theater. This is the History department’s first project with Architecture and Architectural Engineering students. It has been a uniquely wonderful experience to begin new interdisciplinary opportunities between two colleges at Cal Poly.

Rebecca Willis
Concord, CA

Kevin Lee
Westchester, PA

I’m a fourth year Architectural Engineering student at Cal Poly. I collaborated on this project because of my fascination with historical preservation and retrofitting. I was challenged with analyzing the existing structure for structural problems, and developing cost-effective solutions. It was a great experience to collaborate with multiple disciplines and formulate creative ideas.

Kristen Pang
Honolulu, HI

I’m one of four Architectural Engineering students on this project. I was seeking opportunities that would expose me to work I can’t find at school, and fortunately I found RTC Tiburon. I was entranced by RTC’s deep history and I felt very optimistic with its prospects for the future. I explored how to analyze the existing structural systems in conjunction with structural and ADA codes to assist the Architectural design. Overall, I am very thankful for the opportunity, and excited for how this theater can potentially change.

Kristen Pang
Honolulu, HI

I am a first-year graduate student in Architecture at Cal Poly with an undergraduate degree in Architecture from India. As an international student, working in a collaborative design studio with students from different disciplines like ARCE and History has widened my knowledge base and provided me with a different perspective of approaching a design challenge. I thoroughly enjoyed working on this project and look forward to more such challenges in future.

Sridhevi Vaidyanathan
India

I’m graduating June 2017 with a B.A. in History and minors in English and Music. I will be attending the University of Chicago in the fall to complete my Masters in Social Science. As the project historian, I dug deep into the rich history of the RTC and enjoyed the rare treasure of the DeFries Theater. This is the History department’s first project with Architecture and Architectural Engineering students. It has been a uniquely wonderful experience to begin new interdisciplinary opportunities between two colleges at Cal Poly.

Rebecca Willis
Concord, CA
Contents

project research / site analysis

design process / options
project research | site analysis

Romberg Tiburon Center, Tiburon, CA
The Romberg Tiburon Center for Environmental Studies (RTC) is located in Marin County, California at the eastern tip of the Tiburon Peninsula. The RTC is home to San Francisco State University’s marine and estuarine research facilities where professors, researchers, and students focus on understanding climate change and how it affects marine and coastal ecosystems, including the San Francisco Bay and the open ocean.

Building 54 originally opened as a movie theater for soldier during WWII in the early 1940’s and is currently used for research as a wet lab with controlled 24/7 sea water pumping.
The main yard at Tiburon Net Depot during World War II.

The original entrance to the DeFries Theater.

The intertwined metal anti-submarine nets that protected the Bay from 1940-1945.
The nets anchored by heavy concrete buoys were monitored by sailors.

“Keep your shoes shined and your shirt clean”, ca. 1942

The Tiburon Theater today Building 54.
Our team has taken two field trips to the site. Our first visit was on March 10, 2017, where we toured the building and took preliminary measurements of the building. Our second visit was on April 14, 2017 where we investigated the building further with site documentation. In our site documentation, we took pictures, measurements and sketches to take back with us to Cal Poly to develop the project.
Team on site
THEATRE LEVEL

Joists hang on doubled up truss
Slope ends

Brick fireplace

Dressing rooms

2x8 24’

SPANNING WOOD TRUSSES @ 3’ O.C.

SLOPE STARTS

35-6’

CEILING HEIGHT = 243”
= 21'-10”
& 22’ @ STAGE END

1x6 wood siding
“shear wall”

3 diaphragm

GROUND FLOOR

Cripple studs under sloped floor to BM on posts
8x16

Partition wall 8x16

Posts

Sloped 8x16 girder

Rise = 1’
Run = 17’

12'-8” higher ceiling

Dropped ceiling 9'-8”

11'-4” bath
Structural capacity calculations were performed on all existing members to determine if replacement of structural framing would be required. Because of the opportunity to turn the roof into an occupiable space, the roof truss was of great importance to us. If a roof option is added, the roof trusses would need slight reinforcement at its connections.
Structural Model
“Many of our own scientists and students work with interdisciplinary teams to study nature-based adaptation strategies for adapting to sea level rise, a topic of great interest to residents and planners in the Bay Area and especially in Marin County.”

Karina Neilsen, RTC Director

“Bring the theater into the modern world...”

“Based on the number of thesis defenses we have here and the number of crowds they bring... I would be inclined to go with the larger seating plan”

John Kern, Special Assistant to the RTC Director

“I want visitors to get a glimpse of the science that goes on in the building as part of the building experience.”

Dr. Tomoko Komada, Marine Biogeochemistry

“That building is unique in that it is right on the water; we would never be allowed to build such a building again...Re-establishing it as a theater is one such use and going that route should leverage the unique waterfront vantage that the building has.”

Dr. Jonathon Stillman, Ecological Physiology & Functional Genomics of Marine Invertebrates

“Another thing that could be very nice for that room are additional large round tanks for display that could hold herring since they are local to our site and could spawn in the tanks in winter as well. This might be a terrific exhibit and allow some research on spawning behavior and preferences as well.”

Dr. Sarah Cohen, Population Biology and Conservation of Marine Organisms: Ecological and Evolutionary Genetics
REPURPOSE
Create a Presentation Space and Work Space for Researcher

RESTORE
Bring the Theater from the Past to the Present

INVIGORATE
Revitalize the Building and Invite the Community

COMMEMORATE
Celebrate the History and Nature of the Site
<table>
<thead>
<tr>
<th>Existing</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stairs</td>
<td>153 SF</td>
</tr>
<tr>
<td>Entryway</td>
<td>139 SF</td>
</tr>
<tr>
<td>Restrooms</td>
<td>73 SF</td>
</tr>
<tr>
<td>Laboratory</td>
<td>2878 SF</td>
</tr>
<tr>
<td>Stage</td>
<td>1570 SF</td>
</tr>
<tr>
<td>Lab Offices</td>
<td>1428 SF</td>
</tr>
<tr>
<td>Stairs</td>
<td>153 SF</td>
</tr>
<tr>
<td>Lobby</td>
<td>363 SF</td>
</tr>
<tr>
<td>Observation Room</td>
<td>210 SF</td>
</tr>
<tr>
<td>Total</td>
<td>6968 SF</td>
</tr>
<tr>
<td>Stairs/Elevator</td>
<td>319 SF</td>
</tr>
<tr>
<td>Lab Viewing Area</td>
<td>138 SF</td>
</tr>
<tr>
<td>Gallery</td>
<td>159 SF</td>
</tr>
<tr>
<td>Laboratory</td>
<td>2059 SF</td>
</tr>
<tr>
<td>Restroom w/ Shower</td>
<td>273 SF</td>
</tr>
<tr>
<td>Storage</td>
<td>295 SF</td>
</tr>
<tr>
<td>Stage</td>
<td>430 SF</td>
</tr>
<tr>
<td>Fixed Seating</td>
<td>1539 SF</td>
</tr>
<tr>
<td>Flexible Seating</td>
<td>315 SF</td>
</tr>
<tr>
<td>Storage</td>
<td>40 SF</td>
</tr>
<tr>
<td>Stairs/Elevator</td>
<td>319 SF</td>
</tr>
<tr>
<td>Social Space</td>
<td>719 SF</td>
</tr>
<tr>
<td>Restrooms</td>
<td>153 SF</td>
</tr>
<tr>
<td>Observation Room</td>
<td>210 SF</td>
</tr>
<tr>
<td>Deck</td>
<td>988 SF</td>
</tr>
<tr>
<td>Total</td>
<td>7956 SF</td>
</tr>
</tbody>
</table>
design process | options

CalPoly, San Luis Obispo, CA
Asbestos Siding

Asbestos siding is incredibly weather resistant and was very popular in the 1900’s. However, since then it has been found to be a hazardous material with serious health risks when inhaled. In order to bring Building 54 up to code, the asbestos shingles will have to be concealed or removed. Due to the high cost of an asbestos specialist, removal is actually cheaper than concealing.

Redwood

Old growth redwood is used in the framing of Building 54 and was a very common building material for Northern California.

Sheet Metal

Sheet metal is a material unique to theater projection rooms for its fire resistance. Movie films could be easily burned by bright projector lights, making fire a regular threat to theaters.

Partical Sheet Board

Partical sheet board was used for its acoustical properties. However, since its installation in the early 1940’s, the particle board has deteriorated in some areas and has even sustained some water damage.
Proposed Material Palette

Fiber Cement Board

Fiber Cement Board is an inexpensive, lightweight material that performs well under various climate conditions. This material is provided by many manufacturers and can be made into various form factors (colors, textures, finishes). All of these form factors are installed using the same method.

Fiberglass Panels

Fiberglass is an alternate solution to the Fiber Cement Board and is also lightweight and weather resistant. It is more durable, but it is more expensive compared to the fiber cement board.

Glass Wall

Glass Wall Panels are used in both the Lab and the Theater to separate the spaces by program and also allow the spaces to appear open. In the Lab, the Glass Wall would serve as a barrier between the lobby and the laboratory creating a divide between the theater occupants and the researchers. The Glass would allow the Theater occupants to observe the researchers at work. In the Theater, the Glass Wall would separate the Social Space from the main theater, but also not close off the space.

Acoustic Panels

Acoustic Panels help increase the sound feedback from the speakers on stage and also dampen outside noises and echos, the ideal material for a theater. These panels come in various colors and can be arranged to create an interesting wall pattern.
<table>
<thead>
<tr>
<th>Capacity of Seating in Assembly Areas</th>
<th>Number of Required Wheelchair Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 25</td>
<td>1</td>
</tr>
<tr>
<td>26 to 50</td>
<td>2</td>
</tr>
<tr>
<td>51 to 300</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>CLASSIFICATION</th>
<th>USE GROUP</th>
<th>DESCRIPTION</th>
<th>WATER CLOSETS</th>
<th>LAVATORIES</th>
<th>BATH TUBS OR SHOWERS</th>
<th>DRINKING FOUNTAINS</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MALE</td>
<td>FEMALE</td>
<td>MALE</td>
<td>FEMALE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A-1</td>
<td></td>
<td>Theaters usually with fixed seats and other buildings for the performing arts and motion pictures</td>
<td>1 per 125</td>
<td>1 per 65</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 500</td>
</tr>
<tr>
<td></td>
<td>A-2</td>
<td></td>
<td>Nightclubs, bars, taverns, dance halls and buildings for similar purposes</td>
<td>1 per 40</td>
<td>1 per 40</td>
<td>1 per 75</td>
<td>—</td>
<td>1 per 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restaurants, banquet halls and food courts</td>
<td>1 per 75</td>
<td>1 per 75</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 500</td>
</tr>
<tr>
<td></td>
<td>A-3</td>
<td>Assembly (see Sections 2902.2, 2902.5 and 2902.6)</td>
<td>Auditoriums without permanent seating, art galleries, exhibition halls, libraries, arcades and gymnasia</td>
<td>1 per 125</td>
<td>1 per 65</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Passenger terminals and transportation facilities</td>
<td>1 per 500</td>
<td>1 per 500</td>
<td>1 per 750</td>
<td>—</td>
<td>1 per 1,000</td>
</tr>
<tr>
<td></td>
<td>A-3</td>
<td></td>
<td>Places of worship and other religious services. Churches without assembly halls</td>
<td>1 per 150</td>
<td>1 per 75</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 1,000</td>
</tr>
</tbody>
</table>

BE TABLE 1020.1
CORRIDOR FIRE-RESISTANCE RATING

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>OCCUPANT LOAD SERVED BY CORRIDOR</th>
<th>REQUIRED FIRE-RESISTANCE RATING (HOURS)</th>
<th>WITHOUT SPRINKLER SYSTEM</th>
<th>WITH SPRINKLER SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1, H-2, H-3</td>
<td>All</td>
<td>Not Permitted</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H-4, H-5, I</td>
<td>Greater than 30</td>
<td>Not Permitted</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A*, B, F, M, S, U</td>
<td>Greater than 30</td>
<td>1</td>
<td>Not Permitted</td>
<td>1</td>
</tr>
<tr>
<td>R-1, R-2, R-3, R-3.1, R-4</td>
<td>Greater than 10</td>
<td>Not Permitted</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>I-2*, I-2.1, I-4</td>
<td>Greater than 6</td>
<td>Not Permitted</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>I-3, R-2.1</td>
<td>Greater than 6</td>
<td>Not Permitted</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Greater than 10</td>
<td>1</td>
<td>Not Permitted</td>
<td>1</td>
</tr>
</tbody>
</table>

a. For requirements for occupancies in Groups I-2 and I-2.1, see Sections 407.2 and 407.3 of the California Building Code.

b. For a reduction in the fire-resistance rating for occupancies in Group I-3, see Sections 408.8.1.2 and 408.8 of the California Building Code.

c. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 where allowed.

d. [SFM] See Section 1029.

BE TABLE 1017.2
EXIT ACCESS TRAVEL DISTANCE

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>WITHOUT SPRINKLER SYSTEM (FEET)</th>
<th>WITH SPRINKLER SYSTEM (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, E, F-1, M, R, S-1</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>R-2.1</td>
<td>Not Permitted</td>
<td>250</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>F-2, S-2, U</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>H-1</td>
<td>Not Permitted</td>
<td>75</td>
</tr>
<tr>
<td>H-2</td>
<td>Not Permitted</td>
<td>100</td>
</tr>
<tr>
<td>H-3</td>
<td>Not Permitted</td>
<td>150</td>
</tr>
<tr>
<td>H-4</td>
<td>Not Permitted</td>
<td>175</td>
</tr>
<tr>
<td>H-5</td>
<td>Not Permitted</td>
<td>200</td>
</tr>
<tr>
<td>I-2, I-2.1, I-3*, I-4</td>
<td>Not Permitted</td>
<td>200</td>
</tr>
<tr>
<td>L</td>
<td>Not Permitted</td>
<td>200</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.
Single Door Clearances

Size of Clearance at Water Closets

Platform Lift Doors and Gates

Proposed Bathroom Dimensions
"For the mud room, I suggest making a transitional in-out area...(where) researchers’ gear can be washed off."

-Dr. Jonathan Stillman
First Floor

Option 1: Maximum Lab Space

1. Stairs
2. Elevator
3. Mechanical Room
4. Lab Viewing Area
5. Wet Lab
6. Electrical Room
7. Dry Tool Storage
8. Restroom
9. Shower/Mud Room
10. Historic Gallery

Option 2: Open Lobby and Gallery
Existing Lab Layout

Lab Equipment Key

- Chiller: 2
- Generator: 2
- Water storage: 2
- Flow tank: 1
- Insulated plastic tank: 2
- Insulated plastic tank: 3
- Tank in current lab: 2
- Fliberglass tank (90G): 3
- Clear tank
- Fiberglass tank
- Fiberglass tank
- Sea table
- designed to give the public a better view of the work being done in the lab

- the clear tanks and 90 gallon tanks are close to the lab viewing area for the public to see.

Layout Option 1

- designed to have all the sea tables visible and together without stacking them on top of each other

Layout Option 2

- designed to isolate the 90 gallon tanks so that there is more space to walk around them

Layout Option 3
“I want visitors to get a glimpse of the science that goes on in the building as part of the building experience.”

-Dr. Tomoko Komada
“Tanks for display that could hold herring since they are local to our site and could spawn in the tanks in winter as well. This might be a terrific exhibit and allow some research on spawning behavior and preferences as well.”

-Dr. Sarah Cohen
“With regards to the seating and the stage, I would like to see flexibility in terms of seating arrangements... If we could have a flexible seating arrangement, the usage of space could be more multi-faceted.”

-Dr. Jonathan Stillman
Second Floor Option 1

Flexible Seating
1. Stairs
2. Elevator
3. Mechanical Room
4. Storage
5. Restrooms

Social Space
6. Social Area
7. Historical Gallery
8. Flexible Seating
9. Fixed Seating
10. Stage

Occupancy: 150+20

SCALE 1/8” = 1’-0”
Second Floor Option 2

1. Stairs
2. Elevator
3. Mechanical Room
4. Storage
5. Restrooms
6. Social Area
7. Historical Gallery
8. Flexible Seating
9. Fixed Seating
10. Stage

Occupancy: 140+44
Theater
Social Space
Renderings

(A) Rendering of Historical Posters

(B) Rendering of Bay View Window

(C) Rendering of Social Space

(D) Rendering of Theater
1. Stairs
2. Elevator
3. Storage
4. Historical Gallery

Occupancy: ~30
Roof Option

1. Stairs
2. Elevator
3. Storage
4. Occupiable Space
5. Restricted Roof

Occupancy: 30
Project Cost Estimation

Project : RTC: TIBURON THEATER REDESIGN
Location : 3150 Paradise Dr., Belvedere Tiburon, CA 94920

06-06-2017

<table>
<thead>
<tr>
<th>Division</th>
<th>Description</th>
<th>Amount</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>01000</td>
<td>General Requirement Works</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02000</td>
<td>Existing Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demolition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06000</td>
<td>Timber Framing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07000</td>
<td>Thermal and Moisture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08000</td>
<td>Doors and Windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09000</td>
<td>Finishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior Façade</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpentry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite Deck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>Specialties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12000</td>
<td>Furnishings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21000</td>
<td>Fire Suppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22000</td>
<td>Plumbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23000</td>
<td>Heating Ventilating and Air Conditioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26000</td>
<td>Electrical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub Total

<table>
<thead>
<tr>
<th>Amount</th>
<th>856,000</th>
</tr>
</thead>
</table>

Overhead & Profit

<table>
<thead>
<tr>
<th>Amount</th>
<th>208,000</th>
</tr>
</thead>
</table>

Contingency

<table>
<thead>
<tr>
<th>Amount</th>
<th>20,000</th>
</tr>
</thead>
</table>

Total

<table>
<thead>
<tr>
<th>Amount</th>
<th>1,084,000</th>
</tr>
</thead>
</table>

EXPECTED BUDGET

<table>
<thead>
<tr>
<th>TOTAL SF</th>
<th>$/SF</th>
<th>BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,700</td>
<td>$125.00</td>
</tr>
</tbody>
</table>

* **Notes:**
 * Construction Period : 16 months
 * Additional $200,000 for Elevator Installation
 * Excluded HVAC/ELECTRICAL (Subcontracting Req'd)
 * General Requirements (CM, Engineers, Architects & Other Professional Fees Will Vary)

Standard Exclusions:

- Site Work
- Plumbing (Included) But Not Full Scope
- Mechanical/HVAC
- Electrical
- Lab Equipment
- Art Work & Gallery Display
- Light Fixtures
- Environmental Impact Report

Estimated by RTC Design Team (California Polytechnic State University San Luis Obispo)
REPURPOSE
Create a Presentation Space and Work Space for Researcher

RESTORE
Bring the Theater from the Past to the Present

INVIGORATE
Revitalize the Building and Invite the Community

COMMENORATE
Celebrate the History and Nature of the Site

