Skip to main content
Article
Chemical mixture toxicity testing with Vibrio fischeri: combined effects of binary mixtures for ten soft electrophiles
Ecotoxicology and environmental safety (2006)
  • D A Dawson
  • G Pöch
  • Terry W Schultz, University of Tennessee - Knoxville
Abstract

The toxicity of 30 binary combinations of 10 soft electrophiles was examined in Microtox using dose-response curve (DRC) analysis. Chemicals from three groups of soft electrophiles-vinyl Michael acceptors (I--react with a thiol group), dicarbonyl reactive agents (II--react with a primary amine), and alpha-haloactivation compounds (III--react with a thiol group)--were selected for testing to evaluate the relationship between molecular site of chemical action and combined toxic effect. For each combination tested, each single agent was tested alone at six duplicated concentrations and three 1:1 mixtures of the agents were also tested, each at six duplicated concentrations. Exposure duration was 15 min for each single agent and mixture test. Sigmoid DRCs for each single chemical and mixture were constructed and the single chemical curves were used to develop a theoretical dose-addition DRC for the combination. Additivity quotient (AQ) values for slope and EC50 were calculated by dividing the actual mixture slope or EC50 for a given combination by the predicted slope or EC50, respectively, from the theoretical dose-addition DRC. Three criteria were selected for value in determining the combined effect obtained for each combination: (1) slope AQ 95% confidence interval (CI) overlap with 1.0 (1.0=dose addition), (2) EC50 AQ 95% CI overlap with 1.0, and (3) mean mixture data point 95% and 99% CI overlap with the theoretical dose-addition DRC. Each of three sham combinations showed combined effects consistent with dose addition for each criterion. Dose addition was expected for 15 nonsham combinations (nine within-group combinations and six group I:III combinations) and a nondose-additive effect was expected for 12 combinations (all I:II and II:III combinations). Actual combined effects obtained by incorporating all three criteria (noted above) showed only six instances of dose addition. Therefore, time-dependent toxicity (TDT) tests of each soft electrophile alone and for three nonpolar narcotic chemicals alone were conducted, using 15-, 30-, and 45-min exposure durations, to assess the time-dependent nature of the toxicity. Results of the TDT tests suggested that five had fully (or nearly fully) TDT (interpreted as an irreversible effect representing one molecular site of action), five of the soft electrophiles had partially TDT (i.e., representing two or more molecular sites of action for the agents, one irreversible and one reversible), and the three nonpolar narcotics had no TDT (i.e., a fully reversible toxic effect). With this TDT information, the combined effects for 25 of the 27 mixtures, although rather complex, could be explained. It is noteworthy that all combined effects obtained, whether concluded to be dose-additive or not, were close to dose-additive for hazard assessment purposes.

Publication Date
2006
Citation Information
D A Dawson, G Pöch and Terry W Schultz. "Chemical mixture toxicity testing with Vibrio fischeri: combined effects of binary mixtures for ten soft electrophiles" Ecotoxicology and environmental safety Vol. 65 Iss. 2 (2006)
Available at: http://works.bepress.com/terry_schultz/22/