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Co-ordinated Volunteers’ Dilemmas

Ted Bergstrom and Greg Leo

August 18, 2015

”... every one is more negligent of what another is to see
to, as well as himself, than of his own private business; as in
a family one is often worse served by many servants than by a
few.” Aristotle’s Politics Book II, Chapter 3

For many tasks, the efforts of a single individual are sufficient to serve
an entire group. One sentinel can alert an entire community. One group
member can investigate and report on the honesty of a vendor or the use-
fulness of a consumer good. Thus we might expect clustering into groups
to be advantageous. But as the epigraph from Aristotle suggests, there is a
countervailing force. The returns to scale offered by larger groups are often
offset by free-rider problems that grow with group size. This tension was ex-
plored by Mancur Olson [6], who argued that because of free-rider problems,
large groups are less able to act in their common interest than small ones
and thus in politics it is possible for a minority with concentrated interests
to dominate an opposing majority of individuals, each of whom cares less
intensely, even though total willingness-to-pay of the majority is higher than
that of the minority. Here we explore the group free-rider problems observed
by Aristotle and Olson and the relation between efficiency and group size.

1 A Social Problem

As you drive home on a well-travelled street, you encounter a broken traffic
signal or perhaps a pile of traffic-obstructing debris. You wonder whether
to take the trouble to phone traffic authorities about this condition. You
realize that many other commuters face the same choice. If someone else
calls, your effort will be wasted. On the other hand, if everybody believes
that someone else will call, the hazard will go unreported.
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1.1 The Bystander Effect

This conundrum was explored by social psychologists, John M. Darley and
Bibb Latané [3], who were inspired by a newspaper story [5] of a grizzly
series of events; the murder of Kitty Genovese on the streets of New York
City. The story reports that she screamed for help as her killer stalked
her for more than half an hour and stabbed her in three separate attacks.
According to the story, thirty-eight neighbors heard the commotion, but
none came to Kitty’s aid and none called the police.

Many commentators took this story as evidence that urban residents
suffered from apathy and alienation. Darley and Latané suggested that a
more convincing explanation might be what they call the “bystander effect”.
Observers were aware that many others saw the same events and believed
that almost certainly someone else would call the police. To test this notion,
Darley and Latané conducted a laboratory experiment in which subjects
were presented with what seemed to be the cries of a victim of an epileptic
seizure. In alternative experimental treatments, the subjects were led to
believe they were the only observer, one of two observers, and one of five
observers. The experimenters recorded the time elapsed before a subject
would walk down the hall to report the emergency. All of the subjects who
believed they were the only observer, but only 62% of the observers who
believed they were one of five, reported the incident within 6 minutes. The
authors report that “by any point in time, more subjects from the two-
person groups had responded than from the three-person groups, and more
from the three-person groups than from the six-person groups.” Darley and
Latané conclude that

“When there are several observers present, however, the pres-
sures to intervene do not focus on any one of the observers; in-
stead the responsibility for intervention is shared among all the
onlookers and is not unique to any one. As a result, no one
helps.”

1.2 Diekmann’s Model

Another sociologist, Andreas Diekmann analyzed the effect discussed by
Darley and Latané. by constructing an n-player symmetric game, which he
called the Volunteer’s Dilemma.[4] In Diekmann’s game, every player has
the option of taking the action help, which is costly. If at least one player
chooses help, then all players receive benefits b. Those who chose not to help
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have net benefits b and those who chose to help have net benefits b− c > 0.
If no player helps, then all get a payoff of 0.

In this game, it is clear that there can not be a Nash equilibrium where
everyone helps, nor can there be an equilibrium where no one helps. For
a group of size n, there is a unique symmetric equilibrium (an equilibrium
where all players use the same strategies) in which each player offers help
with some probability p between 0 and 1. Diekmann shows that, not sur-
prisingly, the equilibrium probability that any single player volunteers must
diminish as the number of players increases. More remarkably, he found that
in symmetric equilibrium, the probability that nobody volunteers increases
with the number of players.

Proposition 1 (Diekmann). In symmetric equilibrium for the Volunteer’s
Dilemma, as the number of players increases, the probability that each player
volunteers diminishes, and the probability that no player volunteers increases,
asymptotically approaches c

b from below.

2 Co-ordinated Volunteer’s Dilemmas

In Diekmann’s Volunteer’s Dilemma, everyone who offers to help must bear
the cost of helping, even though only one player’s help is needed. Sometimes
the efforts of volunteers can be managed more efficiently. An organization
may be able to solicit volunteers for a one-person task and then choose
just one volunteer who is asked to perform the task. For example, the
National Marrow Donor Program (NMDP) maintains a registry of persons
who avow their willingness to donate stem cells to a leukemia patient with
a matching immune system if the need should occur. For patients with
common immunity types, there are likely to be many eligible volunteers in
the registry. The NMDP chooses just one of the matching registrants to
make the donation.[1]

We model a co-ordinated Volunteer’s Dilemma as follows: Each of n
players can either volunteer to perform a task or refuse to do so. If nobody
volunteers, the task is not done. If one or more players volunteer, exactly
one of them will be randomly selected to perform the task.

Payoffs are assigned as follows. If no player volunteers, the task is not
performed and every player gets a payoff of 0. If one or more players vol-
unteer, all players except the selected player get utility payoffs of b, while
the selected player performs the task at cost c and hence gets a payoff of
b− c > 0.
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This game has no pure strategy symmetric Nash equilibrium, but it does
have a symmetric mixed-strategy Nash equilibrium in which each player
volunteers with probability p = 1 − q and refuses with probability q. In
equilibrium, the probability that all n players refuse is then qn and the
probability that at least one person volunteers is 1− qn.

The comparative statics of symmetric equilibrium in the Single-payer
Volunteer’s Dilemma are consistent with Aristotle’s remark that “every one
is more negligent of what another is to see to.” Just as Aristotle suggested,
each person is less likely to volunteer as the number of players increases.
Stated more formally, we have the following result, which we prove in the
Appendix.

Proposition 2. In the Coordinated Volunteer’s dilemma game with n ≥ 2
identical players, there is a unique symmetric mixed strategy Nash equilib-
rium. The equilibrium probability qn that an individual refuses to volunteer is
increasing in the ratio of costs to benefits and also increasing in the number
of players.

The second part of our quotation from Aristotle makes a stronger claim:
“one is often worse served by many servants than by a few.” The Single-
payer Volunteer’s Dilemma model predicts this effect as well. When there
are more players, not only is each player less likely to volunteer, but, despite
the additional players, it becomes less likely that at least one of the players
will volunteer.

Proposition 3. In the symmetric Nash equilibrium of the Single-payer Vol-
unteer’s Dilemma game with identical players, the larger the number of play-
ers, the greater is the probability that nobody volunteers.

It follows from Proposition 3 that as n increases, the equilibrium prob-
ability that nobody volunteers is a bounded increasing sequence and hence
must approach a limit. The limiting value of this probability can not in
general be expressed in terms of standard elementary functions. However
this limit can be characterized by a well-studied function that has found
applications in physics, engineering, biology, epidemiology, and computer
science. This is the Lambert W function [2]. Much is known about the
qualitative properties of Lambert’s W and routines for its computation are
readily available in Maple, Mathematica, and R.

Proposition 4. In the symmetric Nash equilibrium of the Single-payer Vol-
unteer’s Dilemma game with identical players, as n→∞ the probability that
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no one volunteers converges to −
c
b

W
(
− c
b
e−

c
b

) where W () is the lower-branch

of the lambert-W function.

Sharing the Task

Sometimes burden of a task can be lightened by sharing the work among
volunteers. Suppose that there are n players and a task that must be per-
formed. Players may either volunteer or refuse. Volunteers work together
to perform the task and the cost to any volunteer is c(k) where k is the
number of volunteers. If there are k ≥ 1 volunteers, the task is performed.
Those who did not volunteer will get payoffs of b, while those among who
volunteered get payoffs of b− c(k).

A simple case for analysis is the case where the work can be divided
equally among volunteers with constant returns to scale, so that c(k) = c/k.
This case is formally isomorphic to the case of the coordinated volunteers
dilemma, where one volunteer is selected at random. In this case, the ex-
pected cost to a volunteer when there are k volunteers is c/k. With equal
task sharing, the expected cost is also c/k.

It might be good to have some other examples. Maybe this could be
done for small numbers of people, or alternatively we could do a couple of
numerical solutions for ”interesting” examples of c(k) functions.

Differing Costs and Private Information

The all-pay case

Suppose that the costs c of taking helpful action and the values b of having
the action performed differ within the population. We make the following
assumptions about the distribution of values and of beliefs.

Assumption 1. (i) Individuals know their own values of c and b, but this
information is private. (ii) All individuals share the correct belief that the
other participants in the game that they play have parameters c and b such
that the ratio c/b is an independent random draw from a population with the
continuous cumulative distribution F (·) with support [`, u] where ` < 1.

Remark 1. Given Assumption 1, for any set of n ≥ 2 players, there is a
unique threshold kn such that there is a Bayes-Nash equilibrium in which
all individuals for whom c/b < kn volunteer and all of those for whom the
inequality is reversed will refuse to volunteer.
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An example: The Pareto distribution

Suppose that the ratio of costs to benefits has a Pareto distribution of the
form

F (x) = 1−
(
`

x

)α
(1)

over the interval [`,∞) for some α > 0. When there are n players, for a
player with the threshold level c/b = kn, it must be that

b (1− F (kn))n−1 = b− knb (2)

From Equations 1 and 2, it follows that(
`

kn

)α(n−1)
= kn (3)

and hence

kn = `
α(n−1)

1+α(n−1) (4)

With n players, the equilibrium probability that nobody volunteers is

(1− F (kn))n =

(
`

kn

)αn
(5)

From Equations 4 and 5 it follows that

(1− F (kn))n = `
αn

αn+(1−α) (6)

From Equation 6 it can be seen that if 0 < α < 1, the probability that
nobody contributes is decreasing in n and asymptotically approaches ` from
above. If α = 1, this probability is constant with respect to n if α > 1 this
probabiliy is increasing in n and asymptotically approaches ` from below.
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Appendix

Proof of Proposition 1, Diekmann’s Theorem

Proof. Suppose that each player helps with probability p ∈ (0, 1) and let
q = 1 − p. The probability that no player volunteers is then qn and the
probability that at least one player volunteers is 1 − qn. The expected
utility from the strategy volunteer is b − c and the expected utility from
the strategy not volunteer is b

(
1− qn−1

)
. In the symmetric mixed strategy

Nash equilibrium for this game, all players are indifferent between choosing
the pure strategies volunteer and not volunteer. Therefore in equilibrium it
must be that

b− c = b
(
1− qn−1

)
. (7)

From Equation 7 it follows that in a symmetric Nash equilibrium,

q =
(c
b

) 1
n−1

(8)

In equilibrium, the probability that no player helps is

qn =
(c
b

) n
n−1

. (9)

Since, by assumption, c/b < 1, it follows from Equation 7 that the
probability q that an individual does not volunteer increases with n. Fur-
thermore, it follows from Equation 9 that the probability qn that nobody
volunteers also increases with n. From Equation 9, it is also apparent that
as n increases, the equilibrium value of qn approaches c

b asymptotically from
below.

Proof of Proposition 2

If a player chooses the pure strategy refuse while all other players refuse
with probability q, then the probability that there is at least one volunteer
is 1 − qn−1. In this case, the expected payoff to an individual who refused
to volunteer would be

R(q, n) = b(1− qn−1). (10)

In a symmetric mixed strategy Nash equilibrium, it must be that when
all other players volunteer with probability p, the payoff to a player who
volunteers with certainty is the same as that of a player who refuses to
volunteer. In the case of a coordinated volunteer’s dilemma, the cost of
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volunteering is a random variable which depends on the number of other
players who volunteer.

Lemma 1. If there are n players and if the expected cost to each volunteer
is c/(x+ 1) when a total of x+ 1 players volunteer, then if all other players
volunteer with probability p = 1 − q > 0, the expected cost for a player who
volunteers with certainty is

c

(
(1− qn)

(1− q)n

)
=
c

n

(
1 + q + q2 + . . . qn−1

)
.

Proof. 1 The number of other players who volunteer is a binomial random
variable equal to the number of successes in n−1 trials with probability p of
success on each trial. If there are x volunteers among the other players, then
the cost to a player who volunteers with certainty is 1/(1 + x). Therefore
the expected cost of volunteering is the expected value of c/(x+ 1) where x
has the binomial distribution B(n−1, p). We show that this expected value
is c(1− qn)/pn.

We have

1 = (p+ q)n,

= qn +
n∑
k=1

(
n

k

)
qn−kpk,

= qn +
n∑
k=1

n

k

(
n− 1

k − 1

)
qn−kpk

It follows that
n∑
k=1

1

k

(
n− 1

k − 1

)
qn−kpk =

1− qn

n

1An alternative route to this result is as follows: In a symmetric mixed-strategy equi-
librium, it must be that for each player, the expected utility of playing the equilibrium
mixed strategy is the same as that of playing either of the two pure strategies. If all play-
ers use the mixed strategy refuse with probability q, then the task will be performed with
probability 1− qn and if the task is performed, it is equally likely to be assigned to each
player. Therefore the the expected utility of each player when all refuse with probability
q is

M(q, n) = (1− qn)
(
b− c

n

)
.

If we set R(qn, n) = M(qn, n), and rearrange terms, we arrive at Equation 11.
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Making a change of variables, x = k − 1, we can rewrite this expression as

n∑
x=0

1

x+ 1

(
n− 1

x

)
qn−1−xpx+1 =

1− qn

n

It then follows that

n∑
x=0

1

x+ 1

(
n− 1

x

)
qn−1−xpx =

1− qn

pn
.

Therefore the expected cost of volunteering is

c

(
n∑
x=0

1

x+ 1

(
n− 1

x

)
qn−1−xpx

)
= c

(
1− qn

pn

)
.

We observe that

c

(
1− qn

pn

)
=
c

n

(
1− qn

1− q

)
=
c

n

(
1 + q + · · ·+ qn−1

)
.

This establishes the claimed result.

Lemma 2. Where we define

H(q, n) =
q1−n + q2−n + · · ·+ q−1 + 1

n
,

it must be that in symmetric Nash equilibrium,

H(qn, n) =
b

c
. (11)

Proof. From Lemma 1, it follows that when all other players volunteer with
probability p = 1 − q, the expected payoff to a player who volunteers with
certainty is

V (q, n) = b− c

n

(
1 + q + · · ·+ qn−1

)
. (12)

If there are n players and qn is the symmetric mixed-strategy Nash equi-
librium probability qn that a player refuses, it must be that

R(qn, n) = V (qn, n). (13)
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Equations 10, 12, and 13 imply that

b− bqn−1n = b− c
(

1 + qn + · · ·+ qn−1n

n

)
(14)

Rearranging terms of this expression yields

H(qn, n) =
b

c
(15)

Comparative statics are aided by the following properties of the function
H(q, n).

Lemma 3. Where

H(q, n) =
q1−n + q2−n + · · ·+ q−1 + 1

n
, (16)

for all positive integers n > 1, and for all q ∈ (0, 1), it must be that

(i) H(q, n) is continuous and strictly decreasing in q

(ii) H(q, n+ 1) > H(q, n)

Proof. The derivative of H(q, n) with respect to q is easily seen to be nega-
tive for all q ∈ (0, 1) and hence H is continuous and decreasing in q.

From Equation 16, we see that

H(q, n+ 1) =
q−n + q1−n + q2−n · · ·+ q−1 + 1

n+ 1

=

(
1

n+ 1

)
q−n +

(
n

n+ 1

)
H(q, n)

> H(q, n) (17)

where the final inequality follows from that fact that for i = 1 . . . n and for
all q ∈ (0, 1), q−n > qi−n and therefore q−n > H(qn, n).

We now use these results to complete the proof of Proposition 2

Proof of Proposition 2. In a symmetric Nash equilibrium, each player re-
fuses to volunteer with probability qn where H(qn, n) = b/c. It is easily
verified that limq→0H(q, n) =∞ and limq→1H(q, n) = 1. Since, by assump-
tion, b > c, it must be that H(q, n) < b/c for k close to 1 and H(q, n) > b/c
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for q close to zero. According to Lemma 3, H is a continuous decreas-
ing function of q. Therefore there must be a unique qn ∈ (0, 1) such that
H(qn, n) = b/c.

To see that qn decreases as b/c increases, we note that according to
Lemma 3, H(q, n) is a decreasing function of q and that H(qn, n) = b/c.
Therefore it must be that qn decreases as b/c increases.

Where qn and qn+1 are the symmetric Nash equilibrium probabilities that
an individual will refuse to volunteer when there are n and n + 1 players,
respectively, it must be that H(qn, n) = b/c and H(qn+1, n + 1) = b/c.
Lemma 3(ii) implies that H(qn, n + 1) > H(qn, n) = b/c = H(qn+1, n + 1).
Since H(q, n) is a decreasing function of q, it must be that qn < qn+1.
Thus we conclude that the symmetric Nash equilibrium probability that an
individual refuses to volunteer increases with the number of players.

Proof or Proposition 3

Proof of Proposition 3. The probability that nobody volunteers will be larger
for a group of size n + 1 than for a group of size n if qn+1

n+1 > qnn. This will

be the case if qn+1 > q
n/(n+1)
n . The equilibrium conditions require that

H (qn+1, n+ 1) = H (qn, n) =
b

c
. (18)

Lemma 4, which is proved below, implies thatH
(
q
n/n+1
n , n+ 1

)
> H(qn, n).

According to Lemma 3, H(q, n+ 1) is a decreasing function of q and since,
according to Equation 18, H(qn+1, n+1) = H(qn, n), it must be that qn+1 >

q
n/(n+1)
n and hence qn+1

n+1 > qnn. But this implies that the probability that
nobody volunteers increases with the number of players.

Lemma 4. For all q ∈ (0, 1) and all integers n ≥ 1, H
(
qn/n+1, n+ 1

)
>

H(q, n).

Proof. We note that

H(q, n) =
q1−n + q2−n + · · ·+ q−1 + 1

n

=
1

n

(
q

1− q

)(
1− qn

qn

)
. (19)
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Then

H(q
n
n+1 , n+ 1) =

1

n+ 1

(
q

n
n+1

1− q
n
n+1

)1−
(
q

n
n+1

)n+1

(
q

n
n+1

)n+1


=

1

n+ 1

(
q

n
n+1

1− q
n
n+1

)(
1− qn

qn

)
(20)

It follows from Equations 19 and 20 that

H(q
n
n+1 , n+ 1) > H(q, n) (21)

if and only if

1

n+ 1

(
q

n
n+1

1− q
n
n+1

)
>

1

n

(
q

1− q

)
. (22)

Rearranging terms, we see that the inequality 22 is equivalent to

n

n+ 1

(
1− q

1− q
n
n+1

)
> q

1
n+1 (23)

Define x = q
1

n+1 . Since q ∈ (0, 1), it must be that 0 < x < 1. Inequality 23
can be written as

1− xn+1

x(1− xn)
>
n+ 1

n
, (24)

which is equivalent to

(1 + x+ · · ·+ xn)(1− x)

x(1 + x+ · · ·+ xn−1)(1− x)
>

1 + n

n
. (25)

Inequality 25 simplifies to

1 + x+ · · ·+ xn

x+ . . . xn
>

1 + n

n
, (26)

which is equivalent to
x+ · · ·+ xn < n. (27)

Since, for all x ∈ (0, 1), Inequality 27 must hold, and since this inequality is
equivalent to Inequality 21, the lemma is proved.
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Proof of Proposition 4

Proof of Proposition 4. Where qn is the equilibrium probability that an in-
dividual does not volunteer,

c

b
=
n (1− qn) qn−1n

1− qnn
(28)

Let Qn = qnn, the probability no one volunteers. Then Equation 28 can
be written as

c

b
=

n

(
1−Q

1
n
n

)
Q

n−1
n

n

1−Qn
(29)

which implies that

(1−Qn)
c

b
= n

(
Q

1− 1
n

n −Qn
)

(30)

Where Q = limn→∞Qn, making a change of variables t = 1/n and taking
limits, we find that

(
1−Q)

c

b
= lim

n→∞
n

(
Q

1− 1
n

n −Qn
)

= lim
t→0

Q1−t −Q
t

(31)

If we define the function g(x) = Qx, then we see that

lim
t→0

Q1−t −Q
t

= −g′(1) (32)

= −Q lnQ (33)

Therefore it must be that in the limit as n→∞, the equilibrium prob-
ability Q that nobody volunteers satisfies the equation

(1−Q)
c

b
= −Q lnQ (34)

Let us define θ = c
b . Then From Equation 34 it follows that(

θ − θ

Q

)
= lnQ (35)
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and hence

eθe
− θ
Q = Q. (36)

From Equation 36, it follows that

− θ
Q
e
− θ
Q = −θe−θ (37)

Equation 37 enables us to find a unique solution Q < 1 expressed in
terms of Lambert’s W function, where W (x) is defined to be a solution to
the equation

W (x)eW (x) = x (38)

Thus we must have

− θ
Q

= W
(
−θe−θ

)
(39)

Since, by assumption, 0 < c
b < 1, it must be that −θe−θ ∈ (−e−1, 0).

It is known that for all x ∈ (−e−1, 0), there are exactly two solutions to
Equation 38.2 One of these solutions lies on the “upper branch” of W and
has a value y ∈ (−1, 0) one lies on the “lower branch” and has a value
y ∈ (−∞,−1).

Recalling that θ = c
b , we have now shown that the limit as n gets large

of the probability Q that nobody volunteers is

Q = −
c
b

W
(
− c
be
− c
b

) (40)

where W
(
− c
be
− c
b

)
takes the value on the lower branch solution of Lambert’s

W function.

2Lambert’s W is single valued over the range [0,∞]. Equation 38 has no solutions for
x < e−1.[2]
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Table 1: Volunteer Probabilities by Group Size b/c = 1.1

n q qn p 1− qn
1 0 0 1 1
2 .833 .694 .167 .306
3 .912 .758 .088 .242
4 .934 .761 .066 .239
5 .955 .792 .045 .208
6 .964 .804 .036 .196
7 .969 .805 .031 .195
50 .996 .827 .004 .173
100 .998 .827 .002 .173
200 .999 .835 .001 .165

2.1 Numerical Solutions

I did numerical solutions using MatLab’s polynomial solver. For this purpose
it is handy to rearrange the equilibrium condition

bqn−1 = c
1− qn

n(1− q)
(41)

in the form

(n
b

c
− 1)qn − nb

c
qn−1 + 1 = 0 (42)

I have constructed tables for b/c = 1.1, b/c = 2, and b/c = 4 and shown
the symmetric equilibrium probabilities for numbers of players n from 1 to
7 and for 50, 100, and 200. The last column shows the probability that
someone helps.
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Table 2: Volunteer Probabilities by Group Size b/c = 2

n q qn p 1− qn
1 0 0 1 1
2 .333 .111 .667 .889
3 .558 .174 .442 .826
4 .672 .203 .328 .797
5 .739 .222 .261 .778
6 .784 .232 .216 .768
7 .816 .240 .184 .760
50 .974 .262 .026 .738
100 .987 .273 .013 .723
200 .994 .283 .006 .717

Table 3: Volunteer Probabilities by Group Size b/c = 4

n q qn p 1− qn
1 0 0 1 1
2 .143 .020 .857 .980
3 .350 .043 .650 .957
4 .486 .056 .514 ..944
5 .577 .064 .423 .936
6 .641 .069 .359 .931
7 .688 .073 .312 .927
50 .954 .094 .046 .906
100 .977 .0946 .023 .9054
200 .988 .0950 .012 .9050
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