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Driving home on a well-travelled street, you encounter a broken traffic
signal or perhaps a pile of traffic-obstructing debris. You wonder whether
to take the trouble to phone traffic authorities about this condition. You
realize that many other commuters face the same choice. If someone else
calls, your effort will be wasted, but if everybody believes that someone else
will call, the hazard will go unreported.

1 Volunteer’s Dilemma with Identical Players

Andreas Diekmann modeled this situation as an n-player symmetric game
which he called the Volunteer’s Dilemma [7]. In the Volunteer’s Dilemma
game, each player can choose to take action or not. If at least one person
takes action, then all of those who take action must pay a cost c and will
receive net benefits of b − c > 0, while those who do not take action enjoy
the benefits, but do not pay the cost, and thus receive net benefits of b. If
no player takes action, then all players get a payoff of 0.

1.1 Symmetric Nash Equilibrium

In the Volunteer’s Dilemma with two or more players, there cannot be a
symmetric Nash equilibrium in which all take action, since if anyone else
acts, one’s own best response is not to act. Nor can there be a symmetric
Nash equilibrium in which none take action, since if nobody else acts, one’s
own best response is to act. The only symmetric Nash equilibrium for this
game is one in which each player uses a mixed strategy; taking action with
a positive probability less than 1.

In a mixed strategy equilibrium, each player is indifferent between taking
action and not doing so. Anyone who takes action is certain to have a net
payoff of b−c. In equilibrium, all players must be indifferent between taking
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action and not taking action. Therefore, regardless of the number of players,
the expected utility of each player in a symmetric Nash equilibrium must
be b− c.

In a mixed strategy equilibrium for n players who each take action with
independent probability pn, a player who chooses the strategy “do not act”
will not pay any cost and will enjoy the benefit b if at least one other player
takes action. Let qn = 1−pn. If all other players take action with probability
pn then the probability that at least one of the others takes action is 1−qn−1n .
Therefore the expected payoff from the strategy “do not act” is b

(
1− qn−1n

)
.

It follows that in equilibrium,

b
(
1− qn−1n

)
= b− c (1)

and hence

qn =

(
c

b

) 1
n−1

. (2)

From Equation 2 it follows that in symmetric Nash equilibrium for an n
player Volunteer’s Dilemma, the probability that no player takes action is

qnn =

(
c

b

) n
n−1

(3)

which is an increasing function of n and which approaches c/b in the limit
as n gets large.

This leaves us with a vexing conundrum. The technology of the Volun-
teer’s Dilemma game allows the potential for significant benefits from the
formation of larger groups; an action taken by a single person is sufficient
to benefit the entire group, no matter how large the group. Yet, in symmet-
ric Nash equilibrium for this game, as the number of players increases, the
probability that nobody takes action increases and the expected payoff to
each player remains constant at b− c.

1.2 Efficiency and Optimal Symmetric Mixed Strategy

Inefficiency of symmetric Nash equilibrium in the Volunteer’s Dilemma game
arises from two sources. One is the standard problem of neglected external-
ities. Individuals ignore the fact that an increase in their own probability
of taking action exerts a positive externality on the expected payoffs of all
other players. The second source of inefficiency is a coordination problem.
In mixed strategy equilibrium, players do not know the actions that have
been taken by others. Thus, in equilibrium, there is a positive probability
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that more than one player takes costly action, although the action of only
one is needed to produce benefits for all.

Sometimes it is possible to coordinate the actions of players so that if
there is more than one volunteer, only a single volunteer will be selected
to perform the task. For example, potential donors of stem cells from bone
marrow or blood aphoresis join a registry of persons who have declared their
willingness to donate if their contributions are needed. When a patient is
in need of a transplant, if one or more potential donors of this patient’s
immunity type have volunteered, the registry selects exactly one of these
volunteers to make the donation. [3]. Jeroen Weesie [11] and Theodore
Bergstrom [2] analyze the comparative statics of Nash equilibrium for ver-
sions of Volunteer’s Dilemma in which at most one of the volunteers is
required to pay.

Sometimes duplication of effort can be avoided because potential vol-
unteers can see immediately whether someone else has “beat them to it.”
Bergstrom [1] studies the case of passers-by on a more or less crowded high-
way, who are presented sequentially with the opportunity to help a distressed
traveler. Christopher Bliss and Barry Nalebuff [6], Marc Bilodeau and Al
Slivinski [4] and Weesie [10] analyze a war-of-attrition game in which the
first person to take action is observed by all and where benefits diminish as
time passes. In deciding when to act, players face a trade-off between the
costs of postponement and the possibility that if one waits a little longer,
action will be unnecessary because someone else will have done it.

This paper studies situations where such coordination is technically in-
feasible. In the example discussed at the beginning of this paper, the cost
of informing authorities would be minimized if only one commuter took ac-
tion. But how can this be accomplished? It would not be cost-effective for
the commuters who notice the problem to assemble and choose one of their
number to contact the authorities.

1.3 An appeal to ethics

If players could be persuaded to abide by a self-enforced ethical rule, they
would all be better off than they are in the symmetric Nash equilibrium. In
the absence of a coordinating device, it is not possible to avoid duplication of
effort when when the efforts of only one are needed. However, as we will see,
even without coordination, there is a symmetric ethical rule that would lead
players, using independent strategies, to improve on the symmetric Nash
equilibrium. To find this optimal symmetric rule, we seek a strategy that
satisfies the Kantian principle: “Use the strategy that you would wish that
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everyone would use”.

Proposition 1. In an n-player Volunteer’s Dilemma, there is an optimal
symmetric rule that requires each player to use a mixed strategy in which the
the probability that a player takes action is greater than that in symmetric
Nash equilibrium. If the probability that an individual does not take action
is xn under the optimal symmetric rule and qn in Nash equilibrium, then

xn = n
−1
n−1 qn.

Proof. Where the mandated strategy is of the form: “take action with prob-
ability 1−x”, the probability that at least one player takes action is 1−xn,
and the expected cost to each player of following the strategy is c(1 − x).
The expected utility of every player is

b(1− xn)− c(1− x). (4)

Taking the derivative of expression 4, and arranging terms, we see that
expected utility is maximized at x = xn, when

xn = n
−1
n−1

(
c

b

) 1
n−1

. (5)

From Equations 5 and Equation 2, it follows that

xn = n
−1
n−1 qn. (6)

Since n
−1
n−1 < 1 for all n > 1, it must be that 0 < xn < qn and hence the

1 > 1− xn > 1− qn, which means that the probability of that an individual
takes action under the optimal symmetric rule is less than one, but greater
than the probability of taking action in Nash equilibrium.

Proposition 2. In the limit as the number of players approaches infinity,
under the optimal symmetric rule, the probability that any single individual
takes action approaches zero, but the probability that at least one player takes
action approaches one.

Proof. Equation 5 implies that

lim
n→∞

lnxn = lim
n→∞

( −1

n− 1

)
lnn+ lim

n→∞

(
1

n− 1

)
c

b

= lim
n→∞

(− lnn

n− 1

)
= 0. (7)
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It also follows form Equation 5 that

lim
n→∞

lnxnn = lim
n→∞

( −n
n− 1

)
lnn+ lim

n→∞

(
n

n− 1

)
c

b

= lim
n→∞

(−n lnn

n− 1

)
+
c

b

= −∞, (8)

where the final equalities in Equations 7 and 8 are direct consequences
of application of L’Hospital’s rule. Since limn→∞ lnxn = 0, it must be
that limn→∞ xn = 1, and since limn→∞ lnxnn = −∞, it must be that
limn→∞ x

n
n = 0. Therefore as n → ∞, the limiting probability that any

single individual acts is 1− limn→∞ xn = 0 and the probability that at least
one individual acts is 1− limn→∞ x

n
n = 1.

Table 1 compares symmetric Nash equilibria and symmetric optima as
the number of players is varied, with the parameters b and c set at b = 1, c =
.9. The first column of the table shows the number of players. The second
and third columns show the probability of taking actions for an individual
player in Nash equilibrium and the symmetric optimum, respectively. The
fourth and fifth columns show the equilibrium probability that at least one
player takes action. The last two columns show the utility achieved by each
player in Nash equilibrium and the symmetric optimum.

Table 1: Symmetric Nash equilibria and Symmetric Optima (c/b = .9)

n pN = 1− qn pO = 1− xn PN = 1− qnn PO = 1− xnn uN uO
2 0.100 0.550 0.190 0.798 0.1 0.303
3 0.051 0.452 0.146 0.836 0.1 0428
4 0.035 0.392 0.131 0.863 0.1 0.511
5 0.026 0.349 0.123 0.883 0.1 0.569
25 0.004 0.129 0.104 0.969 0.1 0.852
50 0.002 0.079 0.102 0.983 0.1 0.913
100 0.001 0.047 0.101 0.991 0.1 0.950

Table 1 shows that when the number of players is small, in the opti-
mal symmetric solution, players are much more likely to take action than in
Nash equilibrium. But with small numbers of players, the probability that
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someone takes action is significantly smaller than one, even in the optimal
solution. In both cases, as the number of players increases, the probability
that an individual takes action falls toward zero As n increases, the Nash
equilibrium probability that at least one player takes action falls and asymp-
totically approaches 1 − c

b = .10. In contrast, in the symmetric optimum,
as the number of players increases, the probability that at least one player
takes action increases and asymptotically approaches unity. The expected
utility of each player in Nash equilibrium remains at b − c = 0.1 for any
number of players, while the expected utility of each player at the symmet-
ric optimum rises and asymptotically approaches b = 1, which is the utility
that a player who took no action would get if someone else were sure to take
action.

2 Differing Costs and Incomplete Information

It is common practice to “simplify” game theoretic models like the Vol-
unteer’s Dilemma by assuming that all players have identical benefits and
costs. While this simplification makes it easy to calculate a symmetric Nash
equilibrium, the resulting mixed-strategy Nash equilibrium has an air of im-
plausibility. In the symmetric mixed strategy equilibrium of the Volunteer’s
Dilemma game, all players are indifferent between the equilibrium mixed
strategy and any other probability mix of the strategies “act” and “don’t
act.” Given that this is the case, why should any player take the trouble to
determine the equilibrium mixed strategy proportions and act accordingly?1

If we allow the realistic possibility that different players have different costs
of taking action, we avoid this conundrum and we can construct a man-
ageable model in which players use pure strategies in a symmetric Nash
equilibrium and where the optimal symmetric ethical rule recommends to
each player a pure strategy that is determined by that player’s realized cost
of taking action.

Let us suppose that the costs c of taking action differ among players,
while the benefits b received by each player are normalized to b = 1.2 We
assume that players are total strangers to each other and can not communi-
cate before deciding whether to act. Individuals know their own costs, but
do not know the costs of the other players in the game. We will suppose that

1Herbert Gintis [8] describes this quandry as “the mixing problem”.
2Setting b = 1 for all players involves no real loss of generality for equilibrium analysis,

since every player’s choice of whether to take action is determined by the ratio of this
player’s costs to benefits.
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players are chosen by independent draws from a population with a distribu-
tion of costs that is common knowledge.3 We assume that the distribution
from which players’ costs are drawn has the following properties:

Assumption 1. Players costs are drawn randomly from a population in
which the cumulative distribution of costs is F (·), with support [0, 1]. The
corresponding density function F ′(·) is continuous over the interval c ∈
(0, 1). This distribution has F (0) < 1 and F (1) > 0.

The assumption that F (0) < 1 means that there is a positive probability
that costs are positive and the assumption that F (1) > 0 that there is a
positive probability that a player’s costs are less than individual benefits,
which have been normalized to 1.

2.1 Symmetric Nash Equilibrium

We can model this game as one that begins before individuals learn their
costs. Then the game is a symmetric game in which a strategy for any player
is a function of the costs that will be revealed to this player. There will be a
symmetric Nash equilibrium in which every player uses a threshold strategy
of the form: “Act if and only if your costs, c, turn out to be no larger than
a common threshold level ĉ.” The threshold strategy with threshold ĉ will
be a Nash equilibrium if and only if when all other players follow this rule,
a player with realized cost c will have a higher payoff from acting if c < ĉ
and a higher payoff from not acting if c > ĉ. We have the following result.

Proposition 3. For all n ≥ 2, in an n-player Volunteer’s Dilemma game
with incomplete information, where the distribution of costs is common
knowledge and satisfies Assumption 1, there is a unique threshold equilibrium
with threshold ĉ(n) ∈ (0, 1). The equilibrium threshold level ĉ(n) decreases
as n increases.

Proof. Let us define G(c) = 1 − F (c). Where b = 1, if all other players
use the threshold strategy with threshold ĉ, then for a player with cost c,
the expected payoff to not acting is 1−G (ĉ)n−1 and the expected payoff to

3The assumption of incomplete information seems appropriate for games in which play-
ers are thrown together by chance for a single interaction. Situations where the same
players are engaged in repeated encounters and know each other well might better be
treated as games of complete information. Weesie [10] characterizes asymmetric equilibria
for Volunteer’s Dilemma games with differing payoffs, but complete information in which
players know each other’s payoffs.
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acting is 1 − c. A player with cost c will be indifferent between acting and
not acting if

1−G(ĉ)n−1 = 1− c, (9)

or equivalently,
G(ĉ)n−1 = ĉ. (10)

Assumption 1 implies that G(·) = 1 − F (·) is a decreasing function and
that G(0) > 0 and G(1) < 1. Let H(c, n) = G(c)n−1 − c. Then H is a
continuous, strictly decreasing function such that H(0, n) > 0 and H(1, n) <
0. Therefore for any n > 1, there is exactly one solution ĉ(n) ∈ (0, 1) such
that H(ĉ(n), n) = 0. This ĉ(n) is a unique solution to Equation 10.

Taking the log of Equation 10 and differentiating with respect to n, we
have

lnG (ĉ(n)) + (n− 1)
ĉ(n)G′ (ĉ(n))

G (ĉ(n))

(
ĉ′(n)

ĉ(n)

)
=
ĉ′(n)

ĉ(n)
(11)

and hence
ĉ′(n)

ĉ(n)
=

lnG (ĉ(n))

1− (n− 1)G
′(ĉ(n))

G(ĉ(n))

(12)

Since 0 ≤ G (ĉ(n)) ≤ 1 and G′ (ĉ(n)) ≤ 0, the numerator of Equation 12
must be negative and the denominator must be positive. It follows that
ĉ′(n) < 0 and hence c(·) is a decreasing function of n.

Theorem 3 is reminiscent of Harsanyi’s [9] purification theorem. Harsanyi
shows that a mixed strategy equilibrium for a game with identical players is
the limit point of of pure strategy equilibria for games in which the payoff
functions of individuals have small perturbations around uniform payoffs
for which the mixed strategy equilibrium is calculated. In the application
treated here, there is no reason to believe that differences in costs are small
deviations around some common value.

Proposition 4. The probability that nobody takes action in a symmetric
threshold equilibrium of n players increases with n if

1 +
ρG′ (ĉ(n))

G (ĉ(n))

is negative and decreases with n if this term is positive.

Proof. The equilibrium probability that nobody takes action if there are n
players is G (ĉ(n))n. Since ĉ(n) must satisfy Equation 10 it follows that

G (ĉ(n))n = ĉ(n)G (ĉ(n)) (13)
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Differentiating Equation 13, we have

∂G (ĉ(n))n

∂n
= ĉ′(n)G (ĉ(n))

(
1 +

ĉ(n)G′ (ĉ(n))

G (ĉ(n))

)
(14)

According to Proposition 3, ĉ′(n) < 0. Therefore it must be that G (ĉ(n))n

decreases with n if

1 +
ĉ(n)G′ (ĉ(n))

G (ĉ(n))

is positive and increases with n if this term is negative.

Examples can be found where this is either positive or negative. For
example if G(c) = c−a, the expression in Equation 14 will be positive if
0 < a < 1 and negative if a > 1. I need to work out some more examples
and better yet have a useful general characterization of when the derivative
is positive or negative. [5]

2.2 Optimal symmetric strategies

Let us evaluate possible symmetric mixed strategies from an initial position
in which players do not yet know their own costs, but expect them to be
drawn at random from the population distribution. From this standpoint,
players have identical prospects and we can solve for an optimal symmetric
strategy. We consider symmetric strategies that consist of a threshold cost
level c∗ and a mandate that any player should take action if and only if this
player has costs c ≤ c∗). If the threshold is set at c∗, the probability that
any single player will not take action is G(c∗) and the probability that at
least one player will take action is 1−G (c∗)n. Before individuals learn their
own costs, the expected value of the costs each will have to pay is∫ c∗

0
xG′(x)dx.

Thus, if there are n players and if the threshold is set at c∗, then, before
individual costs are revealed, the expected utility of every player l must be

(1−G(c∗)n)−
∫ c∗

0
xG′(x)dx. (15)

This expression is maximized at c∗(n) where

nG (c∗(n))n−1G′ (c∗(n)) = c∗(n)G′ (c∗(n)) , (16)
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or equivalently when
G (c∗(n))n−1

c∗(n)
=

1

n
(17)

Where ĉ(n) is the symmetric Nash equilibrium threshold, for n players, we
see from Equations 10 and 17 that for any n > 1

G (c∗(n))n−1

c∗(n)
=

1

n

G (ĉ(n))n−1

ĉ(n)
(18)

Since G(c) is decreasing in c, it follows that

G(c)n−1

c

is a strictly decreasing function of c. It therefore follows from Equation 18
that for all n > 1, c∗(n) > ĉ(n).
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