On the least significant 2-adic and ternary digits of certain Stirling numbers

Tamas Lengyel, Occidental College
ON THE LEAST SIGNIFICANT 2-ADIC AND TERNARY DIGITS OF CERTAIN STIRLING NUMBERS

Tamás Lengyel
Mathematics Department, Occidental College, Los Angeles, California
lengyel@oxy.edu

Received: 1/4/13, Accepted: 7/1/13, Published: 8/12/13

Abstract
Our main goal is to effectively calculate the p-ary digits of certain Stirling numbers of the second kind. We base our study on an observation regarding these numbers: as m increases, more and more p-adic digits match in $S(i(p - 1)p^m, k)$ with integer $i \geq 1$.

1. Introduction
Let n and k be positive integers, p be a prime, $d_p(k)$ and $\nu_p(k)$ denote the sum of digits in the base p representation of k and the highest power of p dividing k, i.e., the p-adic order of k, respectively. For the rational n/k we set $\nu_p(n/k) = \nu_p(n) - \nu_p(k)$.

In 1808, Legendre showed

Lemma 1. ([2]) For any positive integer k, we have $\nu_p(k!) = (k - d_p(k))/(p - 1)$.

We define the 2-free part of k! (or unit factor of $k!$ with respect to 2), b_k, as $k! = 2^{k-d_2(k)}b_k,$ or more explicitly,

$$b_k = \prod_{3 \leq p \leq k \atop p \text{ prime}} p^{k-d_p(k)}/k-1.$$

In general, b_k is the p-free part of k! (or unit factor of $k!$ with respect to p), i.e., $k! = p^{k-d_{p'}(k)}/p' - 1$ b_k$ with

$$b_k = \prod_{p' \leq k \atop p' \text{ prime}} p^{k-d_{p'}(k)}/p' - 1.$$

We have the identity (cf. [1]) for the Stirling numbers of the second kind

$$S(n, k) = \frac{1}{k!} \sum_{j=0}^{k} \binom{k}{j} (-1)^j (k-j)^n.$$
Our main goal is to effectively calculate the p-ary digits of certain Stirling numbers of the second kind. For example, if $k = 2$ then $S(m, 2) = 2^{m-1} - 1, m \geq 2$; thus, the binary representation consists of all ones. We try to find similar properties for other values of k. We base our study on an observation (cf. [6]) regarding these numbers: as m increases, more and more p-adic digits match in $S(i(p - 1)p^m, k)$ with integer $i \geq 1$.

We claim the main results (cf. Theorems 2, 4, and 5) in Section 2, and illustrate and prove them in Sections 3-5. We discuss the case with $p = 2$ in Sections 3 and 4 and derive additional results (cf. Lemmas 8 and 9). A general approach is presented in Section 4. Options and limitations (cf. Theorems 12-18 based on [4] and [6]) for other primes are discussed in Section 5. Two examples are provided to demonstrate the cases of 2-adic and ternary digits.

2. Main Results

First, we deal with the binary digits and obtain

Theorem 2. With the above introduced notation,

\[S(2^m, k) = \frac{1}{k!} \sum_{0 < j < k \text{ odd}} \binom{k}{j} (-1)^j (k - j)^{2^m_i} \]

\[\equiv 2^{d_2(k) - 1} (-1)^{k-1} b_k^{2^{m-1}} \mod 2^{m+2-2k+d_2(k)} \quad \text{(2.1)} \]

for $m + 2 \geq k - d_2(k)$, $m \geq 2$, and $i \geq 1$.

Remark 3. Recall that (2.1) implies that $\nu_2(S(2^m, k)) = d_2(k) - 1$ if $d_2(k) - 1 < m + 2 - k + d_2(k)$, i.e., $m \geq k - 2$, cf. [5] and [7] for the generalized version.

We make the calculation more explicit in Theorem 4 and generalize it for $p = 3$ in Theorem 5, and in Theorems 12 and 17, in general.

We set $u_k = b_k \equiv b_k^{-1} \mod 4$ to be the least positive residue of the 2-free part b_k of $k!$ modulo 4 which is the same as that of its inverse modulo 4,

\[c_k = \begin{cases} -1, & \text{if } u_k = 3, \\ +1, & \text{if } u_k = 1, \end{cases} \]

and

\[a_k = \begin{cases} \left\lfloor \frac{b_k}{4} \right\rfloor, & \text{if } u_k = 3, \\ \left\lfloor \frac{b_k}{4} \right\rfloor - 1, & \text{if } u_k = 1, \end{cases} \quad \text{(2.2)} \]

which yields that $b_k = 4a_k + c_k$. We end up with the following theorem that gives $S(2^m, k)$ explicitly, modulo a high power of two, and in terms of k, m, and r ($r \geq 0$ integer).
Theorem 4. With the above introduced notation, for \(k \geq 3 \) we have
\[
S(2^m i, k) \equiv 2^{d_2(k)-1}(-1)^{k-1}c_k \sum_{j=0}^{r} (\text{mod } 2^{e(m,k,r)})
\]
with \(e(m,k,r) = \min\{m+2-k+d_2(k),(r+1)(2+\nu_2(a_k)) + d_2(k) - 1\} \).

With \(p = 3 \), we set \(u_k \equiv b_k \equiv b_k^{-1} \mod p \) to be the least positive residue of the \(p \)-free part \(b_k \) of \(k! \) modulo \(p \), which is the same that of its inverse modulo \(p \),
\[
c_k = \begin{cases}
-1, & \text{if } u_k = p - 1, \\
+1, & \text{if } u_k = 1,
\end{cases}
\]
and
\[
a_k = \begin{cases}
\left[\frac{b_k}{p} \right], & \text{if } u_k = p - 1, \\
\left[\frac{b_k}{p} \right] - 1, & \text{if } u_k = 1,
\end{cases}
\]
which yields that \(b_k = p \cdot a_k + c_k \). We get that

Theorem 5. For \(p = 3 \) and \(k \equiv 2 \) or \(4 \) \(\pmod{6} \), we have
\[
S(i(p-1)p^m, k) \equiv \sum_{j=0}^{r} \left(\text{mod } p^{e(m,k,r)}\right)
\]
where
\[
e(m,k,r) = \min\{m+1 - \frac{k-d_2(k)}{p-1}, m+1 + v_p(a_k) + \frac{d_2(k)}{p-1} - 1, \]
\[
(r+1)(1+v_p(a_k)) + \frac{d_2(k)}{p-1} - 1\}.
\]

3. Proof of Theorem 2

We need a well-known theorem and two lemmas.

Theorem 6. (Kummer, 1852) The power of a prime \(p \) that divides the binomial coefficient \(\binom{\nu}{k} \) is given by the number of carries when we add \(k \) and \(n-k \) in base \(p \).

The first lemma is an improvement of the Fermat–Euler Theorem which claims only that \(t^{2^m+1} \equiv 1 \mod 2^{m+2} \) for \(p = 2, m \geq 0 \), and \(t \geq 1 \) odd.

Lemma 7. (Lemma 3 in [3]) For any integer \(m \geq 1 \) and any odd integer \(t \),
\[
t^{2^m} \equiv 1 \mod 2^{m+2}.
\]
This lemma can be proven by induction on \(m \) and further generalized to higher 2-power moduli (cf. [3]). The following lemma is an improvement of the well-known congruence \(\left(\frac{p^t - 1}{j} \right) \equiv (-1)^j \mod p, 0 \leq j \leq p^t - 1 \) for prime \(p \) and \(t \geq 1 \) integer.

Lemma 8. If \(p \) is a prime, \((a, p) = 1 \), \(t \geq 1 \), and \(1 \leq j \leq p^t - 1 \), then

\[
\nu_p \left(\left(\frac{ap^t}{j} \right) \right) = t - \nu_p(j)
\]

and

\[
\left(\frac{ap^t - 1}{j} \right) \equiv (-1)^j \mod p^{t - \lfloor \log_p j \rfloor}.
\]

Proof. Clearly, identity (3.1) is true by Theorem 6. Using the fact that \(\left(\frac{ap^t - 1}{0} \right) = 1 \) and

\[
\left(\frac{ap^t}{j} \right) = \left(\frac{ap^t - 1}{j - 1} \right) + \left(\frac{ap^t - 1}{j} \right),
\]

it implies that

\[
\left(\frac{ap^t - 1}{j} \right) \equiv (-1)^j \mod p^{t - \lfloor \log_p j \rfloor}
\]

by step-by-step increasing \(j \) from \(j = 1 \) on. \(\square \)

Proof of Theorem 2. The proof relies on the fact that terms with \(k - j \) even will not contribute to the congruence since \(2^m \geq m + 2 \) as \(m \geq 2 \), and on Lemma 7, since

\[
\frac{1}{k!} \sum_{j=0}^{k} \left(\frac{k}{j} \right) (-1)^j (k-j)^{2^m} \equiv \frac{1}{k!} (-1)^{k-1} \sum_{j=0}^{k} \left(\frac{k}{j} \right) \equiv \frac{(-1)^{k-1} 2^{k-1}}{2^{k-d_2(k)} b_k} \mod 2^{m+2-k-d_2(k)}.
\]

Note that since \(b_k \) is odd, \(b_k^{-1} \equiv b_k^{2^{m-1}} \mod 2^{m+2} \) by Lemma 7. \(\square \)

We note that it is easy to see that

\[
S(n, 5) = \frac{1}{24} (5^{n-1} - 4^n + 2 \cdot 3^n - 2^{n+1} + 1)
\]

holds which yields

\[
S(2^m, 5) \equiv 2 \cdot 15^{2^{m-1}} \mod 2^{m-1}
\]

for \(i, m \geq 1 \). Indeed, we have

\[
3^{-1} \equiv 3^{2^m-1} \equiv 3^{2^{m-1}},
\]

\[
5^{-1} \equiv 5^{2^m-1} \equiv 5^{2^{m-1}} \mod 2^{m+2}.
\]
and
\[S(2^m i, 5) = \frac{1}{8} \cdot \frac{1}{3} \cdot \left(5^{2^m i} + 10 \cdot 3^{2^m i} + 5 \right) \equiv \frac{1}{15} \mod 2^{m-1} \]

by identity (3.2) and Lemma 7, if \(m \geq 1 \) and \(i \geq 1 \), with direct calculations and without using Theorem 2. Moreover, we get

Lemma 9. For any integer \(r \geq 0 \) and \(i, m \geq 1 \), we have
\[S(2^m i, 5) \equiv -2 \sum_{j=0}^{r} 2^{4j} \mod 2^{\min\{m-1, 4r+5\}}. \tag{3.4} \]

Proof of Lemma 9. In fact, the statement holds if \(2^m i < 5 \). Otherwise, we rewrite
\[15^{2^{m-1}} = (4^2 - 1)^{2^{m-1}} = -1 + \binom{2^{m-1}}{1}4^2 - \binom{2^{m-1}}{2}4^4 + \cdots \]
\[\equiv - \sum_{j=0}^{r} 2^{4j} \mod 2^{\min\{m+4, 4r+4\}} \]

by Lemma 8, which already implies (3.4) by (3.3) since \(m + 2 - k + d_2(k) = m - 1 \). \(\square \)

The congruence (3.4) guarantees that the binary representation of \(S(2^m i, 5) \) ends in \((0111)^*011110\) if \(m \) is large enough. (With \(d \) being any finite word formed over the alphabet \(\{0, 1\} \), \((d)^* \) denotes any finite number \(t, t \geq 0 \), of copies of the “word” \(d \).) If \(r = 0 \) and \(m \geq 6 \) then we have
\[S(2^m i, 5) \equiv 30 \mod 32. \]
If \(r \geq (m - 6)/4 \) then the congruence (3.4) turns into
\[S(2^m i, 5) \equiv -2 \sum_{j=0}^{r} 2^{4j} \mod 2^{m-1}, \]
and the terms beyond \(j = \lceil (m - 6)/4 \rceil \) effectively do not contribute to the sum.

4. 2-adic Digits: A General Approach for Effective Calculation and the Proof of Theorem 4

If \(k = 5 \) then we get \(d_2(5) = 2, b_5 = 15 \) and \(S(2^m i, 5) \) satisfies congruence (3.3) by Theorem 2. For larger values of \(k \), we use (4.1) below since we do not need the exact value of \(b_k \). In fact, to effectively calculate \(S(2^m i, k) \) modulo a large 2-power, it suffices to use \(b_k \) modulo that 2-power. It can be calculated by the congruence
\[b_k = \frac{k!}{p^{\sum_{j \geq 1} \frac{k}{p^j}}} \equiv \delta \sum_{j \geq 1} \frac{k}{p^j} \prod_{j \geq 0} (K_j)_p \mod p^\delta, \tag{4.1} \]
with \(\delta = \delta(p^j) = -1 \) except if \(p = 2, q \geq 3 \) when \(\delta = 1 \), \(K_j \) is the least positive residue of \([k/p^j] \mod p^j \), 0 \(\leq j \leq d \), if \(p^d \leq k < p^{d+1} \), and

\[
(K!)_p = \frac{K!}{p^{[k/p]!}}
\]

is the product of those positive integers not exceeding \(K \) that are not divisible by \(p \); cf. [2, Proposition 1, p8]. With \(p = 2 \), we have \(\delta = 1 \) if \(q \) is large enough. This implies that

\[b_k \equiv \prod_{j \geq 0} (K_j!)_2 \mod 2^q.\]

Now we can gain a more in-depth look at the binary digits of \(S(2^m i, k) \) by evaluating the right-hand side of (2.1) more effectively via Theorem 4.

Proof of Theorem 4. In a similar fashion to the case with \(k = 5 \) and depending upon \(u_k \mod 4 \), we rewrite

\[
b_k^{2^m-1} = (4a_k + c_k)^{2^m-1} = c_k + \binom{2^m-1}{1}(4a_k)c_k^2 + \binom{2^m-1}{2}(4a_k)^2(c_k)^3 + \cdots
\]

\[
\equiv c_k \sum_{j=0}^r (-4a_k c_k)^j \mod 2^{\min\{m + 2 + \nu_2(a_k) + (r + 1)(2 + \nu_2(a_k))\}}
\]

by Lemma 8, which already implies (2.3) by Theorem 2 since \(\min\{m + 2 - k + d_2(k), m + 2 + \nu_2(a_k) + d_2(k) - 1, (r + 1)(2 + \nu_2(a_k)) + d_2(k) - 1\} = \min\{m + 2 - k + d_2(k), (r + 1)(2 + \nu_2(a_k)) + d_2(k) - 1\}. \]

Example 10. For \(k = 3, 4, 5, \) and \(7 \), we get \(b_3 = b_4 = 3, b_5 = 15, b_7 = 315, u_k = 3 \), \(c_k = -1, a_3 = a_4 = 1, a_5 = 4, \) and \(a_7 = 79 \), which yield that

\[
S(2^m, 3) \equiv -2 \sum_{j=0}^r 4^j \mod 2^{\min\{m + 1, 2(r + 1) + 1\}},
\]

\[
S(2^m, 4) \equiv -2 \sum_{j=0}^r 4^j \mod 2^{\min\{m - 1, 2(r + 1)\}},
\]

\[
S(2^m, 5) \equiv -2 \sum_{j=0}^r 16^j \mod 2^{\min\{m - 1, 4(r + 1) + 1\}},
\]

in agreement with (3.4), and

\[
S(2^m, 7) \equiv -2^2 \sum_{j=0}^r 316^j \mod 2^{\min\{m - 2, 2(r + 1) + 2\}}.
\]
On the other hand, if \(k = 6 \) then \(b_6 = 45, u_6 = 1, c_6 = 1, a_6 = 11, \) and
\[
S(2^m, 6) \equiv -2^2 \sum_{j=0}^r (-44)^j \mod 2^{\min\{m-2, 2(r+1)+1\}}.
\]

Remark 11. Note that the “best use” of the congruence (2.3) comes with values of \(a_k \) that are powers of two, e.g., if \(k = 3, 4, 5, \) etc. It will be interesting to see the general solution to this problem, i.e., find all \(k \) so that \(a_k \), which is derived from the 2-free part \(b_k \) of \(k! \) by (2.2), is a power of two. Indeed, beyond the small cases, we look for any \(k \geq 4 \), for which \(k! \) is the difference or sum of two powers of two (depending on the sign of \(c_k \)), or equivalently, whose binary representation is of the form \(1(0)^*1(0)^*0 \) or \(1(1)^*(0)^*0 \). This follows by the identity \(k! = 2^{k-d_2(k)}b_k = 2^{k-d_2(k)}(4k + c_k) \). (Of course, for \(k \geq 2 \), we get an even \(k! \) so it must end with a binary zero.)

5. Other primes

As \(m \) increases, more and more \(p \)-adic digits match in \(S(i(p-1)p^m, k) \). However, to effectively calculate these matching digits we need another approach. We rely on papers [4] and [6]. We need the following combination of Lemma 5 and Theorem 3 of [4]. This helps in generalizing Theorem 4 for odd primes if \(k \) is divisible by \(p-1 \).

Theorem 12. ([4]) For any odd prime \(p \), integer \(t \), \(n = i(p-1)p^m \), \(1 \leq k \leq n \), and \(m > \frac{k}{p-1} - 2 \), we have
\[
(-1)^{k+1}k!S(n, k) \equiv \sum_{p|k} \binom{k}{i}(-1)^i \mod p^{m+1}
\]
and
\[
\sum_{i \equiv k \mod p} \binom{k}{i}(-1)^i \equiv \begin{cases} (-1)^{\frac{k}{p-1} - 1}p^\frac{k}{p-1} - 1 \mod p^\frac{k}{p-1}, & \text{if } k \text{ is divisible by } p-1, \\ 0 \mod p^\frac{k}{p-1}, & \text{otherwise.} \end{cases}
\]

Therefore, if \(k \) is divisible by \(p-1 \) then
\[
S(n, k) \equiv p^{\frac{d_p(k)}{p-1} - 1}(-1)^{\frac{k}{p-1}}b_k^{-1} \mod p^{\min\{m+1 - \frac{k-d_p(k)}{p-1}, \frac{d_p(k)}{p-1}\}}
\]
where \(b_k \) is the \(p \)-free part of \(k! \) as defined in the introduction and by the Fermat–Euler Theorem
\[
b_k^{-1} \equiv b_k^{(p-1)p^{m-1}} \mod p^{m+1}.
\]
Remark 13. Note that the \(p \)-adic order of \(S(i(p-1)p^m,k) \) does not depend on \(i \) and \(m \). This does not exclude the possibility that by increasing \(m \) we can get more insight into the base \(p \) representation of \(S(i(p-1)p^m,k) \). Indeed, if \(p = 2 \) then (2.1) provides us with the right tool since \(\sum_{j|i} \binom{k}{i}(-1)^i = 2^k-1, \) and it leads to Theorem 4. However, in general, increasing \(m \) does not help in getting more \(p \)-ary digits in a computationally effective way, for (5.2) cannot be significantly improved; although, according to Theorem 17, we get more and more matching digits in \(S(i(p-1)p^m,k) \) and \(S(i(p-1)p^{m+1},k) \) (starting with the least significant bit). We can avoid the use of (5.2) if a closed form exists for \(\sum_{j|i} \binom{k}{i}(-1)^i \) in (5.1), at least for some \(k \), e.g., if \(p = 3 \) or 5.

In fact, for example, if \(k \) is even and \(3 \nmid k \), we get that \(\sum_{j|i} \binom{k}{i}(-1)^i = (-1)^{k/2+1}3^{k/2-1} \). Theorem 5 provides us with a tool to calculate the ternary digits of \(S(i(p-1)p^m,k) \) if \(k \equiv 2 \) or 4 \((\text{mod } 6)\). Its proof is a straightforward generalization of that of Theorem 4. We demonstrate its use in the next example.

Example 14. If \(p = 3 \) then \(u_k \equiv b_k \equiv b_k^{-1} \) mod 3 is the least positive residue of the 3-free part \(b_k \) of \(k! \) modulo 3 which is the same as that of its inverse modulo 3. For instance, if \(k = 4 \) we get then \(b_4 = 8, u_k = 2, c_4 = -1 \) and

\[
a_4 = \left\lfloor \frac{b_4}{3} \right\rfloor = 3,
\]

which yields that \(b_4 = 9 - 1 \). We obtain that

\[
S(2i \cdot 3^m,4) \equiv - \sum_{j=0}^r 3^{2j} \mod 3^{\nu(3,m,r)} \tag{5.3}
\]

with

\[
e(m,4,r) = \min\{m+1 - \frac{4 - d_3(4)}{2}, m+1 + \nu_3(3) + \frac{d_3(4)}{2} - 1, (r+1)(1 + \nu_3(3)) + \frac{d_3(4)}{2} - 1\}
= \min\{m, 2(r+1)\}.
\]

This implies that \(S(2i \cdot 3^m,4) \) ends in \((12)^*122\) in base 3.

Remark 15. Since \(k! = 3^{\frac{k-d_3(k)}{2}} b_k = 3^{\frac{k-d_3(k)}{2}} (3a_k + c_k) \) we get the “best use” of Theorem 5 when \(a_k \) is a power of three, i.e., when \(k! \) is the difference or sum of two powers of three. For example, in Example 14, \(4! = 24 = 3^3 - 3 \) leads to (5.3).

Remark 16. In a similar fashion to the case with \(p = 3 \), if \(p = 5 \) then we can use the fact that \(\sum_{j|i} \binom{k}{i}(-1)^i \) can be expressed explicitly in terms of Fibonacci or Lucas numbers, with a formula depending on \(k \) modulo 20 (cf. [4]).
The idea of getting more p-ary digits of $S(i(p-1)p^m, k)$ by increasing m is well supported and the rate of increase is made effective by the following theorem which is based on Theorems 11 and 14 of [6]. This theorem can be used in getting the digits successively although not in a direct fashion as in (2.3), (2.4), and (5.3).

Theorem 17. Let $p \geq 2$ be a prime, $c, n, k \in \mathbb{N}$ with $1 \leq k \leq p^n$ and $(c, p) = 1$, and u be a nonnegative integer, then

$$
\nu_p(S(cp^n+1 + u, k) - S(cp^n + u, k)) \geq n - \lfloor \log_p k \rfloor + 2.
$$

It was also conjectured in Conjecture 2 in [6] that for $n, k \in \mathbb{N}$, $3 \leq k \leq 2^n$, and $c \geq 1$ odd integer, we have

$$
\nu_2(S(c2^n+1, k) - S(c2^n, k)) = n + 1 - f(k)
$$

for some function $f(k)$ which is independent of n (for any sufficiently large n). In fact, for small values of k, numerical experimentation suggests that

$$
f(k) = 1 + \lfloor \log_2 k \rfloor - d_2(k) - \gamma(k),
$$

with $\gamma(4) = 2$ and otherwise it is zero except if k is a power of two or one less, in which cases $\gamma(k) = 1$. This would imply that $f(k) \geq 0$, cf. [6].

In connection with Theorem 12, we note that if k is divisible by $p - 1$ then k/p is not an odd integer. On the other hand, if k/p is an odd integer then we observe a behavior which is somewhat different from that of Theorem 12.

Theorem 18. (Theorem 2 in [4]) For any odd prime p, if k/p is an odd integer then $\nu_p(k!S(i(p-1)p^m, k)) > m$.

Acknowledgment The author wishes to thank Gregory P. Tollisen and the referee for helpful comments that improved the presentation of the paper.

References

