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Using the static Taub universe as an example, we study the effect of curvature anisotropy on sym-
metry breaking of a self-interacting scalar field. The one-loop effective potential of a A¢* field with
arbitrary coupling (§) is computed by &-function regularization.. It is expressed as a perturbative
series in a small anisotropy parameter a measuring the deformation from the spherical Einstein
universe with radius of curvature a. This result is used for analyzing the symmetry behavior of
such a system as a function of the geometric (a,a) and field (§,A) parameters. The result is also used
to address the question of whether and how curvature anisotropy can affect the inflationary
scenario, old or new. We find that for a massless scalar field conformally coupled to the back-
ground with a prolate configuration (negative scalar curvature) the phase transition is of second or-
der, in which case inflation to the extent necessary for cosmological purposes becomes highly unlike-
ly. For the massless minimally coupled scalar field, first-order phase transitions can occur for a cer-
tain range of the radius and deformation parameter. If the curvature radius in the axisymmetric
direction is held fixed, increasing deformation can restore the symmetry, whereas if the shape is held
constant but the size is allowed to vary, decreasing the radius of the universe can induce symmetry
breaking. For the minimally coupled field in a closed universe with high curvature a term linear in
the background field in the effective potential appears. The barrier thus generated in the effective
potential replaces the broad plateau of the flat-space Coleman-Weinberg potential. The meaning
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and implication of these results are discussed.

1. INTRODUCTION

In an earlier paper! we started a systematic investiga-
tion into the symmetry behavior of a self-interacting field
in curved spacetime and studied the effect of spacetime
curvature and field coupling on phase transitions using
the Einstein universe as an example. In this paper, we
continue this investigation for homogeneous anisotropic
spacetimes, focusing on the effect of curvature anisotropy
on symmetry breaking, using a static Taub universe? as an
example. We also extend our analysis of the Einstein
universe and delve somewhat into the effect of topology
on symmetry breaking. The Taub metric is an anisotropic
generalization of the closed Robertson-Walker metric and
a specialization of the mixmaster universe,> where two of
the three principal radii of curvature are equal.

Our interest in quantum vacuum processes in homo-
geneous but anisotropic cosmological models is manifold.

Foremost is the belief that the universe at very early times’

may have existed in an anisotropic and inhomogeneous
state. Despite the fact that our universe is observed to be
highly isotropic today and is believed to have existed in a
state of high isotropy since at least the grand-unification
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(GU) era (tgy~10~% sec) after a period of inflation,*>

our knowledge of the state of the universe before the GU
inflationary era is quite lacking. A well-known result® in
classical general relativity suggests that the universe near
the cosmological singularity could be highly anisotropic
and inhomogeneous, its generic behavior being described
by the (inhomogeneous) mixmaster model.> It can be ar-
gued that when quantum effects due to particle produc-
tion are included in our consideration, the isotropic state
can be extended as far back to the Planck time
(tpy ~10~* sec), as most of the anisotropies are dissipated
in a relatively short duration. However, detailed calcula-
tion of these processes have been carried out only for Bi-
anchi type-I universes, which contain anisotropy in the
expansion (shear) but no anisotropy in the spatial curva-
ture. From the dynamics of classical anisotropic models
and the perturbation analysis of isotropic models, one
learns that during the evolution, while the component of
shear may decay in time, curvature anisotropy can actual-
ly grow. Since these factors are closely coupled via the
Einstein equations, it is perhaps reasonable to assume that
the strong quantum dissipative effect acting on shear will
also suppress curvature anisotropy at the end of the dissi-
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pation epoch. However, it is not entirely implausible that
a minute amount of curvature anisotropy left at the
Planck era can still grow to a finite amount at the begin-
ning of the grand-unification era. In light of these con-
siderations, one should include the more general class of
anisotropic models as permissible initial conditions before
the GU era for the consideration of quantum processes
like phase transitions.

Granted that a certain degree of anisotropy and inho-
mogeneity may survive through the Planck epoch and
persist to the GU epoch, a natural question to ask is
whether they can modify. the standard inflationary
scenario. This question has been addressed by a number
of authors in varied forms. Wald’ analyzed the late-time
behavior of initially expanding homogeneous models with
a positive cosmological constant A (acting like a vacuum
energy density term due to the vacuum expectation value
of the Higgs field) and concluded that all Bianchi-type
models except type IX (to which the Taub and mixmaster
universes belong) evolve exponentially towards the de
Sitter solution and the behavior of type-IX universes is
similar provided that A is sufficiently large compared
with spatial curvature terms. These results comply with
the “cosmic baldness” conjecture of Bocher, Gibbons, and
Hawking’ that perturbations in a de Sitter universe will in
general decay rapidly away. Notice that these statements
about the behavior of shear and curvature anisotropy as-
sume that the universe is already in an exponentially ex-
panding stage. If, however, prior to inflation the universe
is dominated by shear or negative curvature, then a result
due to Barrow and Turner® suggests that inflation in the
old sense* cannot occur. All of the above analyses are
based on an examination of the classical Einstein’s equa-
tions for homogeneous anisotropic universes, no field-
theoretical description of the Higgs field is involved.
Thereafter, Steigman and Turner® considered a
Friedmann-Robertson-Walker (FRW) universe perturbed
by shear and vorticity. They analyzed their effects on the
Hubble expansion rate and on the evolution rate of the
Higgs field as governed by a flat-space Coleman-Weinberg
(CW) effective potential. They concluded that neither
shear nor negative curvature can have significant effect on
inflation (in the new sense’) during or after the vacuum
era. Although an effective potential governing the Higgs
field is used, it is not for the same curved-spacetime back-
ground which governs the dynamics of the universe. To-
day many studies of phase transition in the GU epoch as-
sume a curved-spacetime description for cosmology but a
flat-space formalism for field theory. The logical con-
sistency and physical soundness of such a hybrid frame-
work is, in our opinion, rather questionable. It is our
uneasiness with this state of affairs which prompted us to
carry out this series of studies on the effect of spacetime
curvature, topology, and field coupling on cosmological
phase transitions.” Specifically, concerning the role of
curvature anisotropy on inflation as is addressed in this
paper, we do not think the studies carried out so far”® are
conclusive. A good many authors have indeed treated the
phase-transition problem in the de Sitter universe in a
consistent manner,'° but the adaptation of results for the
de Sitter universe is appropriate only for situations where
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inflation has already commenced. They cannot answer
the question of whether or not inflation can take place in
the face of shear and curvature anisotropy, assuming from
our earlier discussion that a somewhat chaotic state can
exist prior to the GU epoch. For these problems, one
should instead use the effective potential in a curved
spacetime with shear and anisotropy, the same spacetime
one uses for the description of cosmology. As is well-
known to practitioners in this field the precise form of the
effective potential can dictate rather different outcomes
for the behavior of the Higgs field and the dynamics of
the universe during the phase transition. A good case in
point is the “fine-tuning” problem [i.e., V"'(¢ =0)=0, see
Eq. (4.12) and Ref. 5] in the new inflationary scenario.
On this point alone, we find that indeed for an important
class of curved spacetimes this condition is not satisfied.
In a more careful analysis of the Einstein universe (re-
garded as an instantaneous snapshot of the closed FRW
universe), we find that for massless minimally coupled
scalar fields a term linear in the background field ¢ dom-
inates the effective potential near the symmetric state
¢=0. The existence of such a barrier which increases
with curvature violates the CW condition and makes in-
flation in the new sense difficult to achieve.” A phase
transition by tunneling can still occur, but that would
bring back the well-known difficulties of the old scenario.
It is worth noticing that this rather unique behavior of the
massless minimal field is generic to spacetimes with topol-
ogy R!'xS? (see Sec. V 2). For conformal fields in the
static Taub universe, the symmetric state becomes unsta-
ble as the space evolves from an oblate [anisotropic pa-
rameter a > 0, defined below Eq. (2.3a)] to a prolate con-
figuration (@ <0). Only a second-order phase transition
can occur, which renders inflation to the extent necessary
for cosmological purposes highly unlikely. These are but
a few of the results we obtained from a detailed analysis
of the effective potential in a static Taub universe. They
should serve to illustrate the relevance of curvature and
topology in symmetry-breaking considerations in curved
spacetimes. By exemplifying certain conditions in curved
space where inflation can fail to occur, we hope to draw
the readers’ attention to the complexity of issues involved
and to sound a note of caution in the ordinary treatment
of these problems.

In this work we choose to work with the static Taub
universe because it makes a well-defined effective poten-
tial possible and allows us to address both the effect of to-
pology and spatial curvature anisotropy. In a more gen-
eral but perhaps more formal context (than that related to
the inflation problem) we also obtained the relation be-
tween the critical radius (size) and the deformation pa-
rameter (shape) of the geometry. For example, if the cur-
vature radius in the axisymmetric direction is held fixed,
an increasing deformation can bring about symmetry res-
toration. Alternatively, symmetry breaking can occur by
scaling down the size of the universe. Our present prob-
lem shares some similarity with the problem of finite-size
effects on phase transitions,!! a subject of much recent in-
terest in condensed matter and surface physics. Although
as a first step we consider here only static spacetimes, we
believe that dynamical effects are probably just as, if not
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more, important, especially at or near the quantum epoch.
Symmetry breaking due to shear is an obvious possibility.’
The derivation of an effective Lagrangian in general
curved spacetime'? and the study of dynamical effects on
phase transitions!® are currently under investigation. In-
corporation of our present result on curvature anisotropy
with that obtained elsewhere on the effects due to expan-
sion!® and shear!* will enable us to analyze the symmetry
behavior of the mixmaster universe, which would consti-
tute an important step towards understanding the quan-
tum nature of the early universe.

This paper is organized as follows: In Sec. II we derive
the one-loop effective potential via the {-function method,
using the eigenmodes of a scalar wave operator in the
Taub universe. The geometric quantities of the Taub
universe and details of the summation techniques are col-
lected in the Appendices A, B, and C. Using the renor-
malization condition of Ref. 12, we proceed in Sec. III to
renormalize the coupling constants of the effective poten-
tial. Our results for the effective potential can be written
in terms of geometric invariant quantities, which can pro-
vide a more general setting for treating quantum fields in
homogeneous but anisotropic spacetimes. This is con-
tained in Appendix D. In Sec. IV we study the symmetry
behavior of a massless field and analyze the differences
between the minimally coupled and the conformally cou-
pled cases. In Sec. V we discuss the meaning and restric-
tions of our results and compare our method with other
work. We also draw implications of our findings to phase
transitions in the inflationary universe and suggest some
direction for further investigation.

II. EFFECTIVE POTENTIAL

The metric of a diagonal mixmaster universe is given
by?

3
ds’=—dt’+ 3 12(0%)?, (2.1)
a=1

where o are the basis one-forms on the three-sphere satis-
fying the structure relation d 0°=+C%.0°A0°. For Bi-
anchi type-IX spaces C%,=¢€%, is the structure constant
of the rotation group SO;. In the Euler-angle parametri-
zation® (0 < 6 < 7,0 < ¢,1 < 2m), the o° are given by

o?=cosyydO+sinysinfd¢ ,
o?= —sin dO+cosysindd¢ , , (2.2)
o°=dy+cosfd¢ .

The [,’s are the three principal curvature radii of the

homogeneous space and are constants for a static

universe. The cases when any two of /,’s are equal are the

Taub universes. The case when all three /,’s are equal is

the closed Friedmann-Robertson-Walker (FRW) universe.
The curvature scalar R is given by

41,2—1,2 6(1+Fa)

R = = , (2.33)
21,4 a’(l1+a)

where a=2I, and a=(/,2/13*)—1 is an anisotropy pa-
rameter, with range —1 <a < . We call the configura-

tion with a >0 oblate and that with a <0 prolate. In the
case of small anisotropy (near-Einstein universe), R can be
expanded in powers of a as

6 a o ‘
R=— |1+ ———+40(’ 2.3b
22 + 3 3 +O0(a”) ( )
The volume of the Taub wuniverse is given by

Q=27%3/V1+a. (See Appendix A for details.)

Consider a massive (m) scalar field ¢ with quartic
self-interaction (A) coupled to a static Taub universe
described by the Lagrangian density

LIFgw]=—+¢ |—O+m?+(1— {5—%{54, (2.4)
where
1 0 a
O= [LVV sz———————— ’\/?_ 1244
& Vu vV —g dx# 8 ox"

is the Laplace-Beltrami operator on R!X.S3 and the cou-
pling constant £=0,1 denotes conformal and minimal
coupling, respectively. This action has a minimum at
¢ =¢, which satisfies the classical equation of motion

~9

~D+m2+(1—§)% ~¢ $—0. (2.5)

Quantum fluctuations b=¢ —$ around the classical back-
ground field ¢ satisfy an equation of the form (to lowest
order in ¢)

(—O4.#%)¢(x)=0, (2.6)

where . #2=M?+(1—&)R /6 is an effective mass which
depends on the background curvature R, the couplmg § ,
and on the background field ¢ via M*=m2++Ad>
When contributions from quantum fluctuations are in-
cluded, the equation satisfied by the background field ¢
contains an extra term due to the variance of the fluctua-
tions,

2+ <¢2> $=0. 2.7

ox|>’

—O+m?+(1-§) %

In the functional-integral perturbative approach, the ef-
fective action which is related to the effective Lagrangian
L ¢ by

F[$’gyv]= f d4x v —gLeff (2.8)
is expanded in powers of 7 as
r[$1=S[4]+TV+1I". (2.9)

Here S [$ ] is the classical action

S[$1= [d*xv—gLy,

(2.10)
Lg))z_—;-(z(x) —D+m2+(l—§)—§— $x)——K¢
'V is the one-loop effective action
I‘“):l_zﬁ"lnDet(p_ziﬁ)= Jaxv=eL®, @11
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and I'" denotes higher-loop contributions. In the above, 4
is the operator defined by
A=—0+m2r1-pR 1 252
6 2
A mass scale p is introduced to render the measure d[¢]
of the functional integral dimensionless. In a static,
homogeneous spacetime, as is the case under study, ¢ isa
constant field. One can then define an effective potential
by V( ¢)— —(vol)~I'(¢), where vol denotes the spacetime
volume.

The one-loop effective potential V'V is formally diver-
gent. We shall use the ¢-function regularization! to
render it finite. For operators with a known eigenvalue
spectrum on spacetimes admitting Euclidean sections, this
method is particularly handy. Denote by Ay the eigen-
values of the operator A4 on the Euclideanized metric ob-
tained from (2.1) by a Wick rotation to imaginary time
7=it. A finite-temperature (T) theory is defined by im-
posing periodic boundary conditions on 7 with period
B=T""'. The zero-temperature result is regained by let-
ting B become very large so that the eigenmodes in the
imaginary direction become continuous again. One then
introduces the generalized {-function §(v)-defined by

E= (u™2Ay)"" (2.13)
N

(2.12)

In Hawking’s formulation, the one-loop effective potential
is given by!®

§'(0) . (2.14)
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In the S'xS? topology of Euclideanized metric, vol=Q.
We now proceed to calculate V! for the static Taub
universe with small anisotropy. The final expression
(2.32) is given as a series expansion in the deformation pa-
rameter o.
The eigenvalues of the operator A4 are given by

2mng JJ+1) 1
)\ = + |—== 2
v B 1,2 L2 1,2
+m2+(1—§)%+%$2. (2.15)

The spatial eigenfunctions and eigenvalues have been de-
rived by one of us before.!” Here N denotes the collection
of temporal and spatial quantum numbers no, J, K, M,
with ranges ny=0, *1, J=0, &+, 1, 2,2,...,
and K, M=—J, —J+1,... J—1, J The quantum
number M is totally degenerate. For comparison with the
spectra in the deformed space (mixmaster) and the spheri-
cal space (Einstein), the relation of eigenfunctions
Diy(0,6,4), and the hyperspherical harmonics
Youm(X,0,6) on SO4-symmetric space can be found in
standard texts.!®

The derivation of the & function in (2.13) involves sim-
ply carrying out the summations of (2.15) over the ap-
propriate ranges of N. In the low-temperature limit
(B— « ), the sum over n can be replaced by 8 f dkqy/21r.
Integrating over ko and summing over M (multiplicity
2J 4+ 1), one gets

gw):ﬁ/ﬂr—(vi S i —— |n’+o+a 4k2+i]— 1=£ |2 o (2.16)
Viar TW) & a™% 3 3 ’ ’
where we have introduced the notations
n=2J+1, o=—£+M%?. 2.17)

The summation over K can be performed if the summand is expanded about a =0 (the Einstein universe) for small a:

2 n2(n2+0)—v+1/2+(_;__
n=1

v)%[nz(n2——l)+(1—§)n

2

2](n2+0_)—v—l/2

— O[T(—;-——v)(l—§)n2(n2—{—0)"’_1/2—i—2(v2—%)az(nz—i—a)_"*y2
NGt e 1)+ U= 2 Lo | @19
60 18 36
Define
w n?

Z(r,0)= gl m (2.19)

The ¢ function can then be expressed as
Fv—+) 2
;(v)zv%r I"(v)2 W)™ gyt EyatEyad) (2.20)
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Ey=Z(v—+,0),
Ei=3(3—V[Z(v—1,0)—(£4+0)Z(v++,0)],
Ey=—3(5 =1 =EZ(v++5,0)+ 55— 3Z(v—3,0)— (60 + L&+ 2)Z(v+ +,0)

+(302+3 o+ 240+ 2EHZ(v+ 2,001,

The functions Z(r,0) are similar to the generalized ¢ functions. They possess poles at r =3 —n,
ative integer r terms do not generate divergences). Writing Z(r,0) as

Z_(n,o)

Z(r,o0)=——7——+Z(n,0)+0(r—5+n), (2.22)
r—>-+n
the E,’s can be separated into a singular part and a regular part:
Z_(2,0)
Eo=""122 L 702,00 +0(), (2.23a)
v .
El:g%[z_,(z,a) (Lo)E+0)]++[Z(2,0)—(E+0)Zo(1,0)]
— Yz 20 —(E+o)Z_,0, a)]—%[ 0o(2,0) —(E+0)Zy(1,0)]+0() , (2.23b)
1 1 o o 2 & _é‘_z_
==L LA A V4
Ey=—|—%Z.12,00+ |5 + £~ ]Z 1(Lo)— | J5+ 15+ 75 T 36 55 |Z-10:0)
+ {—I?Q]Z_l(l,a)——rlo o(2,0)+ | = +%E—+ |Zo(1,0)
o2
P oo 2 g &, [1-¢
w0 1szr T3 77 [P0t |7 vAeLe)
+—3"6[32_1(2,0)—<60+%§+%)z_l(1,a) +B02+ B o+ 2 +2oE+3EHZ_1(0,0)]+0(2) . (2.23c)
The part containing the I" functions in (2.20) can likewise be expanded as a series in v, with
'(v—+) v Ao 2.2
lim 2 lap)” VAT L S 2y o) (2.242)
v—0 I'(v) a 4
1 1
d |Tv=3) @ | . TO—3) (gu)> , 2
1 — _ _ 4y
o dvl v a Im—re) ¢ Wv—2)—¥0)+inlap)]
VA 2,2
=— :’T 1+2v |24+1n2 0(+?) (2.24b) -
From (2.20) and (2.24), one obtains
_ 2,2
£(0)= dg(v") = 0/3 (Eg+E1a+E,0%) e+ 2+lngju—](E0+E1a+E2a2)pole]. (2.25)
v=0

The pole terms and the regular terms are readily identified from (2.23) as

pole terms= Z _{(2,0)~+ —[Z 12,0)—Z _(1,0)(&+0)]

A - £
40+ T4 367 2

—a2 %2_1(2,0)—‘

o
'56—1-37—65——% ]an(l,o)-f-

2405

(2.21a)
(2.21b)

(2.21¢)
n=0,1,2,... (the neg-

Jz_,(o,a)' ,  (2.26a)
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regular terms= Z,(2,0)+ %[20(2,0

1-¢

2
rat 45

2

40 36

Setting this back to expression (2.14) for the effective po-
tential one gets

#i

(1) _ s

V= mﬁg(m

#i 2
—-2—6' (Eg+Eja+E,a )reg
a2u?
+ 2+ln——f— (Eo+Ea+Eya®)pore | -
(2.27)

The term containing the volume Q of the Taub universe
when expanded in a becomes

1 1
2 4

1 | a_ o
2aQ " 47%a

2 8

(2.28)

Inside the brackets, the pole part depends on Z_;(n,0),
n=0,1,2. From (B5)—(B7), we have [see Appendix B and
C for the evaluation of Z(r,0)]

Z—I(O’o-):—;_ >

z_1(1,a)=—% , (2.29)
2

Z_,2,0)=—2 .

ot

Substituting (2.28) and (2.29) into (2.27) we obtain for the
pole part

1
EE(EO+E1a+E2a2)pole
_ 1 | 2 &
b | 16 T 249
20O L_iz_ 2.30
+ta =545 360 " 144 (2.30)

Reexpressing this in terms of & by (2.17) and using the

geometric expressions in (A7) to (A9), (2.30) becomes
_ER? ERM? M*  CapsC?P"®
23047% 19277 647 38407

Combining this with the regular terms in (2.26b), we ob-

tain finally the one-loop effective potential in small defor-
mation expansion as

(2.31)

(E+0)Zy(1, 0)]-—[2

Jz_,u,a)—%zo(z,a)ju

(2,0)—(£+0)Z_(1,0)]

36§ ]ZOIU)

Zy(0,0) (2.26b)
[
#
V(1)= A+ B 2
ZaQ( +Ba+Ca*®)
2,2 2p2 2 4
5 2+lnaE §R2_§RM2 M2
4 23047 1927 64
CopysCoPT2
ﬂ*z—— , (2.32)
38407
where
A=Zy2,0), (2.33a)

2
B=$[Zo(2,0)—M*a*Zo(1,0))+ % | - —M?a%o

’

(2.33b)
Ce (1—&) LZ 2 g 1 7 1
=—"1 "W o(2,0)+ 56—‘;+§§ Zy(1,0)
o’ SO
2 + 18 + 36U+ Zy(0,0) . (2.33c)

III. RENORMALIZATION

The effective potential V is given as a sum of the quan-
tum (one-loop) effectlve potent1al V in (2.32) and the
classical potential po V(o + V ) corresponding to the
field (¢) and geometry (g):

(0) )\’ Ny
VO =1(mp?+EpR)G >+ — a
(3.1)
V9= —(Ag+kpR+ 5€13R*+565C°+6G) .
Here A is the cosmological constant, k=(167Gy)~!, Gy

being Newton’s constant, and €; are the coupling con-
stants for quadratic-curvature terms: C2=C%"%Capys be-
ing the Weyl curvature-squared, and G =R2Pr8R .55
—4R°PR 5+ R? the Gauss-Bonnet density. (See Ref. 12
for details.) The divergences in V are removed by the re-
normalization of these parameters which have hitherto
been regarded as bare quantities, i.e.,

m2=m52+8m2; (3.2)

etc. This is equivalent to the introduction of a counterpo-
tential -

Ve=V;+ V5 (3.3)
with
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The counterterms are determined by imposing suitable re-

c_lg 222 1 2~ Oh 24
Vi=78m¢ "+ (85)R¢ +E~¢ normalization conditions, e.g., m2=62V/8¢ 2 | F=0R=0’
and etc.
. . <y g 5 This procedure has been discussed at length in our ear-
Vg=—(8A+8kR + 7 6€;R "+ 78€,C") lier papers (Refs. 1 and 12). In fact, since ultraviolet

divergences in the theory occur at the local scale, it suf-
fices to take the small-R (large @) limit of V for the deter-
mination of these counterterms. In the near-flat-space

limit (o >>1) the coefficients 4, B, and C of V in (2.32)
V=V + V4 Vo=V + Vi - are given by

(the pure divergence terms D¢2, OR, and G do not enter
here), which upon addition to ¥'® and V'V renders V fin-
ite:

Axic(E =M+ M*a*) | T +In T |,
2 2.2 4 4
& EM*a o M’a o
B~ 2L 45|28 || o2 | _Mae g
192 n4 + ] 9% n4 o 1—+—21n4 , (3.4)
3 o M?a? (4 2 o o
CNMTzTM4a4 %-{—-lnz' +-§—6—Z~* %—}—lnz _T% %—}—37111? +4—15 2+ln:

One expects to see the same ultraviolet behavior manifest here as in the Einstein universe! or, more generally, in curved
spacetime under the small-proper-time Schwinger-DeWitt expansion.!? The global properties of spacetime which govern
the infrared behavior of the fields and their symmetry-breaking patterns will of course be different. One can get V¢ by
using the expressions for the counterterms in Eq. (4.19) of Ref. 12, which were derived under the renormalization condi-
tions [Eq. (4.18)] therein. Combining V¢ with the one-loop potential ¥’ in (2.32) and the classical potential ¥® in
(3.1), (now with renormalized coupling constants) we obtain the renormalized one-loop effective potential as follows:

V= —

€ €
A+«kR +—21-R2+—22—C2

1ogag Age_ iR ImP+(/2)41a? | 14 g mlm?+ (/48]
M e I 4 373 (2 527
T [m=+(A/2)$¢"]
~y  Hmt m%a? MR [ | Im*—(£/6)R,]a? #m R |, | m%a® | .
+—(1—£&)R@2— 141 2+1 1
+ir(1=5R¢ oar? |2 T2 s P 4 1022 || & |
2 2 2 2_ 2 2792 2.2
#EIR? - [m"—(£/6)R,]a aC |, [m*—(£/6)R;]a #ikm m’a
— — —_ 1+In | 22—
230472 0T 4 384072 +in 4 , 64772 +n
—8A(<¢>)+%(A +Ba+Ca?) . ; (3.5)

The quantum correction terms can be regrouped into a flat-space part, which, together with the classical field terms (in
the square brackets) make up the Coleman-Weinberg potential [Eq. (4.23) of Ref. 12], and a curved-space part involving
R, R?% and C? terms which has the generic form as in Eq. (4.22) of Ref. 12. Comparing this with the renormalized ef-
fective potential for the Einstein universe [Eq. (20) of Ref. 1], we notice that the major difference lies in the terms in V!
involving the deformation parameter a and, of course (due to the nonconformal flatness of the Taub universe), terms
arising from the renormalization of coupling constants associated with C2, the square of the Weyl tensor.

One may have noticed that in the massless, conformal field case the C? term in Eq. (3.5) has an infrared divergence.
This is a reflection of the fact that the large-mass limit which was assumed in the derivation of the counterterms is not
appropriate. The treatment of this special case is presented in Appendix D. :

For the convenience of later use, we record here the values of A, B, and C in the high-curvature limit (small a).

For conformal coupling, £=0, |0 | <<1. From (B14)—(B16) and (2.23) one gets

1 o _ v 3

A=700"24 " g O, , | (3.62)
_.__l__ _é_ L v 0_2 1 3

B—720+72+0 144+12€I+16['}’+3 §3)E]+0(0”) , (3.6b)
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oL 2 L _5 _&r|_ 1., &
C= J5p00 — %Y — 432§ 7’+ T 2880 72 8 §6(3) [ 15 =+ 48
+0 [ — 5 —w ¥+ (3 + 5 EEB) — (G5 + 57 EDE(S)]+0(0?) (3.6¢)
where ¥ =0.5772 is the Euler constant. For minimal coupling, §=1, 0=1+y. From (B18)—(B20), one gets
A'=Z,(2,0)= 3, a,y" (3.72)
n=0
B'= ¢lag+(1—E)bo]— 15 (5 —E) +la; +(1—Eby + 5(5 —E)—boly
+% [az+(1-§)bz—b1—~ T+ % Z lan+(1—8)by —b, 1 y"= 2 dny", (3.7b)
n=3 n=0
, 1= (1—£)
C'= "Eé 40 —bo(“ 36 §+ 150 ) —72Lc0
2
1= @ bo £ (1—-¢§)
T TR e T a0 T T g tag [0t T @
2| @2 b1 » s €0 |1 & (1-§7
gt Tl TR T g0 a6 (T 12 @
w a, by, —2 1 & (1—€) n_ &, un
+ n§3 20 20 180 36 §)b 40 180 + 36 Cn—1 7 Cp |V = ,Zoe"y (3.7¢)
For n=0,1,2, the d,’s and e,’s are given below: 100 r 758!
dy=—0.2485+0.2007¢ , sok i
d;=0.1858—8.545x 1072¢ ,
80r -0.80 ]
d,=—4.219%x1072-2.190X 10~% , (3.8)
0=0.2075—0.2210£ +3.531 X 10~%£2 | or 1
e;=—0.1044+7.199 X 10726 4+7.300x 10732, 601 .
e;=—1.950x 107244.502 X 10726 —2.438 X 1032, 5o} ]
Note that in this case, the n =1 terms in the Z(r,o) func- V(@) 4ol |
tion are not included, for otherwise an artificial infrared
divergence will appear when y approaches 0. Therefore, 30k ]
——(A+Ba+C - -
22 Q (A+Ba+Ca?) 20
= (a{m?*+(A/2)$2+[(1—£)/6]R}'? o .
2a()
(0]
+A4'+B'a+C'a?) . 3.9
-0 4
IV. SYMMETRY BEHAVIOR
20 | 1 1 1 1 ] |
We now make use of the full expression for the effec- 0 4 8 12 16 20 24 28
tive potential V( ¢) to study the spontaneous symmetry ¢
breaking of the system. We are particularly interested in FIG. 1. One-loop effective potential of a massless, confor-

how deformation in the form of spatial curvature aniso-
tropy in the background spacetime affects the symmetry
of the scalar field system. For simplicity we shall treat
the massless field in detail. In this case the curvature ef-
fect will be apparent not only on the classical, but also on
the quantum level. Generalization to the massive case
should be straightforward.

mally coupled scalar field in a static Taub universe with varying
deformation parameters (a). The value a=0 is the Einstein
universe. Symmetry breaking will occur when a < —0.75—§,,
8, =6.302X 10~ %A. Here we set a=1, A=10"2, #=1. For all
values of @, such that |@oa | <4.2X 10 the quantum correction
to the ¢* term is negligibly small compared to the classical term
At /4.
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In the small curvature (or large curvature radius) limit and minimal fields are quite different. We discuss these

corresponding to low-energy or late-time regimes, the ef- cases separately as follows:

fective potential (3.5) reduces to the familiar Coleman- (1) Massless Conformal Field. 1In this case

Weinberg form and we recover their result that no sym-

metry breaking can be induced by one-loop quantum m=0, £=0. o= A 52a2 o1 4.1
corrections in a A¢* theory in flat space. In the large- » 6 2 $fa<l. @D

curvature limit corresponding to conditions prevailing in
the early universe under study, the behavior of conformal Using (3.6) and (2.28), we get

N Rga Apa, A |1 @ ooa 2 Ap? L 1 a2
V)= 18 +w® + 4t | 120 Taso T s —w¥) |+ ot =5 — gt L3 6]
2724 AbaZa?
) n bo +£—2y+£+a2[—;—0+%§(3) 4£(5)] |+ (gravitational parts) , (4.2)
2567 8 3 3

where “gravitational part” denotes terms proportxonal to A R, R ,C2.

For conformal coupling, the scalar curvature R in the 4 R¢ term acts like an effective mass which makes symmetry
restoration or breaking possible even on the classical level. Recall that
23 4 ta
(1 + c!)4/3 .

For > —<, R>0, $ =0 is the only local minimum. [The form of V(¢) is sketched in Fig. 1.] Hence no symmetry
breaking is possible. Had the system been in the broken-symmetry state, then increasing oblate deformations (a > 0) can

induce symmetry restoration on the classical level. For the spherical Einstein universe (¢ =0), R =6/a?,

~4 A 272
Ao In ? ¢0
4 8

21?2
Q

1 M
2 19272

14

+5 —2r

|

1— A%

= (4.3)
T

A A2
vig)=2
a

+

N

For the ordinary range of A <1072, no symmetry breaking can happen even with quantum corrections. This has been
noted in our earlier paper.! To determine whether by decreasing a <0 in a prolate deformatlon symmetry can be broken,
we look for conditions wherein V(¢ is a local minimum at a value of qS;&O by computing V’(¢)_d V( ¢)/d ¢

A

A 4
W b |13 M| 1L a2 g A
Vig)= a? | 1+a  47? AT el T
‘ . KA 242
S P N W S e e e 1A 44
327 8 3
Here $ =0 is obviously a solution. A nonzero $;£O solution exists whereby V'($ )=0 if and only if
4
1 1+35a |1
o AR e = 2l H3 4.5
a? l+a 4m%a? 24 + [3 t3)] @)
Since A << 1, an approximate solution can be found
4
~ 6 1+ 5a A a
2_ LI LI 3 . 4.6
o) g’ lta 9672 1+ 3 +a[5—58(3)] (4.6)
The condition for this to be true is
a<ar = _%_SL s
where 4.7

8, =(6.302 107 %) .

This phase transition (from the ¢ =0 symmetric state to the ¢¢0 broken-symmetry state) is of the second order. This is
easily checked by calculating V"'($),
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7N 1 1+—§_ Ah 1 A{"z
vie= a? | 1+a 4r 24 + + [3 —&(3)] +—£-2
RY8/ 7\¢00 14 5 ) A :
x|1= 3272 In 8 +3 3 —2}/+ 3 +a— 30 +56(3)—548(5)] ,

and noticing that ¥”'(0) <0 when a < —+ +A(—6.302X 10~ =a; . (See Fig. 1.)

As the value of a <0 is decreased (increasingly prolate configuration) the quantum effect will sustain the symmetric
state until a;. For a <<ay, the classical effect of curvature R <0 again dominates the symmetry breaking.

The above result is presented under the assumption of constant-length (@ =21, =const) deformation. For a volume-
preserving (2=const) deformation, the calculation proceeds in like manner. One should be cautioned that at a= —+
our small o expansion around a=0 may not be valid. However, since in both cases the difference & from the classical
critical point is extremely small it is sufficiently safe to conclude that for conformal massless fields, it is primarily the
classical effect of curvature which determines the critical point. Only in a very small range near R <0 (or « <- 2) will
quantum effects of deformation annul the classical effect and suppress symmetry breaking. This can happen at any
length scale by exerting only deformation. Our result here agrees with the conclusion of Critchley and Dowker.!’

(2) Massless Minimal Field. In this case

m=0, £=1, o=—1+y, y=%$zaz<<l'

From (3.5) and (3.9) the effective potential is

2
N Ay # 2 2229172, , MR RO“
= — A+D E A/2)(1
V(g) 4!¢ +4172a4{( +Da+Ea”)+[(A/2)(1+a)a“d ] /*} + 384,72 4 +2
A4 | Abo’a® 14 .
— 55677 In 3 +—3— + (gravitational parts) , : (4.8)

where D=B'+A'/2, E=C'+B'/2—A'/8.
Due to the absence of the classical curvature effect, the only cause of symmetry breaking is of quantum origin. From
(3.7) and (3.8) with £=1 we can write

A+Da+Ed*= Y (a, +f,,a+g,,a)(-;—k$2a2)” , (4.9)
n=0
where
a d a
fn:dn“—.i'}"’ gnzen+7n_?n
and
ag=—0.4115, a;=-0.3522, a,=0.003178,
do=—0.0478, d,=0.1004, d,=—0.06409 , (4.10)

eo=—0.01315, e;=—0.02519, e,=0.02308 .

Combining this with terms of the same order in )»(3 2, we get from (4.8)
#

) A~ }\, ~ A ﬁ
Vi$)= ¢+ s [(/2(1+a)g 1+ - (a0 + oo +goa’)
A 4 2
#irg 2, It+35a | Rea
2
+ 8r2a? (a1 +fra+g1a%)+ 8(1+a) a T
244 A 2(12
+ 280 o+ grar— it "5‘; — L [rowdm . @11

The appearance of the term proportlonal to (¢ )12 dictates the rather unusual symmetry behavior of the minimal field.

Note that V( ¢) is nonanalytic at qS 0, but is nevertheless a local minimum. Unlike the case of the conformal field with
R >0, the only admissible phase transition will be of first order. To see if another minimum exists, we look for values of
¢mm;éO at which V( ¢mm) is a second minimum, i.e.,



V'($min)=o
V”($min) > 0 ’
V($umin)=V1(0)
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(4.12a)
(4.12b)
(4.12c¢)

so that $mm is a critical point. If at the second minima, V( $mm) < V(0), the system will undergo symmetry breaking and
assume the new state of global minimum as ground state. If ¢mm exists, it would provide a natural scale for setting
the renormalization parameters qSo Setting ¢0—¢mm in (4.12c) gives

172

172

I % )\, 2 N A 2 A
V(o= 555 |/ Trapoa+ $o’a’X + —% T o'y | =0, (4.13)
where
344a , Roa’
X=fi|a,+5+alfi+5)+ag —15)+ e ™2 | (4.13a)
3Aﬁ Adya?
Y=1+-"5 a2+f2a+g2a2——277——,6—1n——g~— , (4.13b)
while V'(¢o)=0 gives
R v . 12 12, 5
Viigg)=—""— A/2 iV 1+adoa +2 A bo*a’X + A fl’-¢o4a4y =0. (4.14)
4a*d, 2 2 3
—
Solving (4.13) and (4.14) we obtain two equations for b0 <0, increasing |a| will reduce a, even further. This

and X:

3 1/3 1+ 1/6
~ a
acho= pre A , (4.15a)
4 l 1/3
X=_23 |27 1t 4.15b
5 3 x ( )

For any given R, and o (constant-length deformation),
these equations determine a, and ¢,, where V(¢g) has a
global minimum. Alternatively, if the values of ¢, and
the renormalization point R, for the coupling constant &
are set at the characteristic scale of any realistic model of
particle physics like GU, then (4.15) determines the corre-
sponding values of a and a. Using (4.15b) an approxi-
mate solution for a, can be obtained if the term propor-
tional to A in Y is neglected (to the zeroth order in A):

1 Roac2
"a
24(1+a)
=~ T3id4a 1t P+ 1+ aat (g — )]
173
_36(1-}—01)4/3 412 4.16)
3+4a 34 )

For small a, using the small-a expansion for the values of
ai,f1,81 from (4.10) and setting A~10"2, one gets ap-
proximately

Roacz

” =—130.7(142.522x 10~ 3a +0.2215a?) .

In

(4.17)

In order for (4.17) to be satisfied, Roa,> must be a very
small number. Note that except for —1.138X 10 2 <a

means squashing the Einstein universe tends to restore the
symmetry. To see the relation between a., Ry, and ¢, let
us first consider the case of the spherical Einstein
universe. Setting a=0 in (4.17) and (4.15a), we have

(4.18a)
(4.18b)

Roa2*=4.206%x10"% ,
$0al=1.2905 ,

where a? is the critical radius for the undeformed space.
Taking ¢o~10"5 GeV characteristic of the grand unifica-
tion scale, a,~2.58 X 10~%° cm, which is close to the pre-
diction of the inflationary model. Starting with a sym-
metric state at qS 0, by decreasmg a beyond the critical
radius (a <a?) a global minimum will appear, signifying
spontaneous symmetry breaking. [See Fig. 2(a)]. Howev-
er, condition (4.18a) for the existence of a second
minimum requires that the coupling constant & be renor-
malized at Ry=~66.4 cm~2, or a radius of a=0.3 cm. If
£ is renormalized at a lower energy or later time (closer to
flat space), the critical radius will be larger and the vacu-
um expectation value of ¢ will be smaller. This may
cause symmetry breaking at a lower-energy scale. One
can understand the role of Ry from the renormalization-
group point of view:?°

2
(w)=¢&') |1 In|£ ] |. 4.19
Ep)=&"(p +322n”H (4.19)
Setting £(u')=1 (minimal) at u'?=R,, the value of £ at
u=1/a,is
Ea ) =1+ -2 In—1  _11404x107. 420
327 a,’R,

Therefore the classical term [(1—&)/12]Ré? acts as a
negative (mass)? term which is responsible for the symme-
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FIG. 2. (a) One-loop effective potential of a massless, minimally coupled scalar field in the Einstein universe with varying curva-
ture radii a. @ is defined to be the critical radius of the first-order phase transition. When a <a?, the broken-symmetry state is en-
ergetically preferred. In the limit of @ — o the flat-spacetime Coleman-Weinberg A¢* potential is recovered. V is plotted in the unit

of VIA/2/4m%ad* with A=0.01, a’=1, and In(Ral?/24)= —130.6 the value of a_ is related to ¢, and R, via Eq. (4.18). (b) One-

(a).

try breaking. From this argument one can predict that as
a approaches —%, the curvature scalar vanishes and no

spontaneous symmetry breaking can take place. Indeed,
Eq. (4.16) gives a, =0 in that limit.

Let us now examine the effect of deformation a on'the
critical radius a,. Take |a|=0.3 as an example, using

4.17),
for a=0.3 Roat?=2.722x10"7, (4.21)

for a=—0.3 Rya, 2=3.405x10"%, (4.22)
where a;t and a; denote the critical lengths for a > 0 and
a <0. Comparing with (4.18a); we see immediately that

at,a; <al, (4.23)
which indeed shows the behavior we have stated earlier.
Thus, starting with a spherical space in the broken-
symmetry state, by deforming it either in the oblate or the
prolate direction, one can reduce the critical length and
induce symmetry restoration. [See Fig. 2(b).]

These are based on the approximation (4.16) obtained
from (4.15) by neglecting the term in Y containing A. We
can estimate the error incurred by using a typical value

loop effective potential of a massless, minimally coupled scalar field in the Taub universe with varying a. A particular value of
‘a=al/2 is chosen to illustrate the effect of constant-length deformation on the symmetry restoration. All the parameters are as in

for A~10~2. Take, for example, the case a=0 in (4.18),
we get for the contribution of the term in (4.13b)

. 2.2
252}‘ az——;;—l—lﬁlnMTan—lASXIO_“,

which is indeed negligibly small compared to unity.

The above discussion can be repeated in a similar
manner for volume-preserving deformations via the rela-
tion Q=27%a%/VT+a. A set of solutions exists for ¢ §

and Ry,

. 6 1/3 1 1/6
do= Ya ( ETY } , (4.242)
Y77'2 1/3
X'=-=3 o , (4.24b)
where

X' =4# [a,+%—<}1n2+(1—%d2){2—1n3

c

+ (f1 +3)a+aXgh — 5 ++n2) |,
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and
Cf a;
fl— 1= 3 )

’ fl 2
g1 =g1_7+3f11 .
For any small a, the critical volume (2, can be written as

c

In—==(—193.8)(14+5.161 X 10 32 +0.2191a?) . (4.25)

0

Thus, except for a small range —2.355X% 1072 <a <0, in-
creasing |a | will again decrease 2, and drive the system
towards symmetry restoration.

V. DISCUSSIONS

In the above we have presented a rather detailed deriva-
tion of the effective potential of a self-interacting scalar
field in a homogeneous universe with small spatial curva-
ture anisotropy (Sec. II). We have also discussed at some
length symmetry behavior (Sec. IV) of such a system in
such a geometry. To complete the discussion we want to
compare our methodology and results with some related
works and elaborate further on their implication on some
current issues.

(1) Comparison with weak-field approximation. Some
recent work?! has attempted to treat symmetry breaking
and related problems in curved spacetime by using near-
flat-space techniques such as Riemann-normal-coordinate
expansion on the metric for the derivation of the effective
potential. These approximations, as we have explained
here and in our earlier work!!? can account only for the
local behavior of the theories but not the global. It is thus
useful for identifying ultraviolet divergences of the theory
(as we have done in Sec. III), but not for investigating the
symmetry behavior of the system. One needs to know the
infrared behavior of the system. This can be done by
analyzing the response of the fundamental mode of the
quantum operator of such a system under changes in the
order parameter'? (in our case, e.g., the background field
¢) or some external parameters (e.g., temperature 7). Or,
when the exact form is lacking for eigenvalue summation,
one should make approximations in energy or length
scales corresponding to the infrared limit. The large cur-
vature (or small radius) expansion we used here (Sec. IV)
and in earlier work! is adopted just for this purpose. For
the study of quantum processes in the early universe
where the curvature of spacetime is not always small, this
usually makes a difference. For example, in Ishikawa’s?!
discussion of gravitational effects on symmetry breaking
in curved space, he adopted a weak-field approximation
for the derivation of the effective potential. His result for
the negative-curvature minimal-coupling case does not
agree with ours. We suspect that this is related to the in-
consistency of his result for high critical curvature to his
weak-field assumption. The eigenmode-expansion method
used here sees no restriction from the curvature of the
background.

(2) Symmetry behavior in the Einstein universe. Sym-
metry behavior for ?»_¢4 theory in the Einstein universe,
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which is a special case of the static Taub universe, has
been studied in detail by us! and by a number of other au-
thors (see references quoted in Ref. 1), notably, Ford and

- Toms.?® In the case of massless minimally coupled fields,

Ref. 1 arrives at the critical curvature by examining the
condition which leads to the convexity of the effective po-
tential at ¢ =0, thus identifying the critical curvature at
which F”'(0) changes sign. Reference 20 proceeds by ex-
amining the stability of the zero mode of the operator
near the classical field ¢ =0. However, these previous re-
sults look quite different from our present result, Eq.
(4.15) with a=0. We will try to address this discrepancy
here.

In the limit of m?4(1—&)R /6~0, Egs. (30) and (36)
of Ref. 1 for the critical curvature based on the criterion
V"'(0)=0 actually has no physical solution, as ¥"'(0) nev-
er goes to zero. In fact it has a minimum value greater
than zero about ¢=0. The result we obtained before is
not a critical radius, but an approximate solution for the
point at which V" (0) takes its minimum value. This
means that a second-order phase transition cannot occur.
So if the universe is in the region of broken symmetry
(m? <0), reducing the size of the universe will gradually
bring the asymmetrical ground state closer to ¢ =0 with
V''(0) always greater than zero. It is therefore inap-
propriate to look for a critical point by imposing
V"(0)=0. Similarly if the universe had started from the
symmetric phase [with m? <0 but m?+(1—£&)R/6>0],
as the curvature is reduced, the symmetric phase becomes
unstable, but since ¥’'(0) is greater than zero the transi-
tion cannot be second order. However, as discussed for
the massless case in Sec. IV a global minimum of V(¢)
does exist at a nonzero value of ¢ for a <a., this will al-
ways allow a first-order phase transition to occur.

The physics of this phenomenon is closely related to the
occurrence in Eq. (4.11) of the linear term

[(A/2)(1+a)$2a?]/2/an%a* (5.1)

in Eq. (4.11). Technically speaking, it comes from the
first term in the mode sum (2.16),

Eé—{m2+[(l—§)/6]R +(A/2)$2)12 (5.2)
under the condition
m24 1_;_5 R<<%$2. (5.3)

Thus for the massive or nonminimal-coupling case, unless
m2+[(1:§)/6]R ~0, one can expand (5.2) in powers
of (A/2)¢ 2, and get only the usual $ 2 and $ 4 terms in
the sffective potential. The interesting linear dependence
in ¢ does not appear and there is no first-order phase
transition. This is why a first-order phase transition
occurs in the massless, minimal-coupling case and not the
conformal case.

The appearance of this term spoils the analyticity of the
effective potential at ¢ =0 and dictates the rather unusual
symmetry behavior of the minimal field. Infrared disease
at $=0 is commonplace in effective potentials of any

massless field. For example, the well-known Coleman-



2414

Weinberg potential is infrared divergent in the fifth
derivative with respect to ¢ (due to the ¢ "'ln¢ term). The
severity of such a problem can be avoided by one deriva-
tive order if the renormalization-group equations are used.

The occurrence of (5.2) in the effective potential (4.8)
which we believe is generic to universes with topology
R X S* can be understood more generally by considering
the role played by the apparent dimension of the universe.
By apparent dimension we mean the dimension obtained
when structures of size small compared to the Compton
wavelength of the particles or fields defined on the mani-
fold are neglected. Thus to a particle whose Compton
wavelength is much smaller than the radius of the three-
sphere, the apparent dimension is four, whereas for a par-
ticle whose Compton wavelength is larger than the radius
of the three-sphere the apparent dimension is one.

If one computes the one-loop correction to the effective
potential in one dimension in a fashion similar to Sec. II,
one obtains on dividing by the volume of the three-sphere
and taking [(1—£&)/6]R as an effective mass, exactly Eq.
(5.2). Thus we see that the origin of the linear term is due
to the apparent reduction in the dimension of the space-
time. However, the effective potential is dominated by
the term (5.2) rather than terms of ¢ 2 and ¢ * orders only
when

m?+ -l—gﬁ—Rzo and $~0 . (5.4)

It implies that whenever Eq. (5.4) is satisfied, our four-
dimensional system can be considered approximately as a
one-dimensional one. By the same token the M3 term in
the finite-temperature case of Dolan and Jackiw?? can be
understood as the reduction of R3xS! to R3, in the
infinite-temperature limit.

A theorem of Coleman?*?* (which is a generalization of
an earlier theorem in statistical mechanics by Mermin and
Wagner?® on a lattice to the continuum) states that in di-
mensions less than or equal to two the infrared diver-
gences are so severe?® that there is no possibility of spon-
taneous symmetry breaking for a scalar field; the only
vacuum expectation value for ¢ allowed is zero. This
means that as the radius of the universe is decreased, one
would naively expect the four-dimensional manifold
(R1xS3) is collapsed into a one-dimensional one (R) and
Coleman’s theorem requires that the symmetry is to be re-
stored. This indeed agrees with our result near ¢ =0. By
including the daisy diagram as discussed in Ref. 1, one
can obtain a minimum value of F”'(0) as 3(A/167%)*/3
which is, of course, greater than zero. But when we are
away from the region ¢~O0, the one-dimensional behavior
no longer prevails and spontaneous symmetry breaking
can take place. This is why we can find the second
minimum of the effective potential at ¢.;,. One can
check the above reasoning by a careful examination of the
length scale which will be used to define the apparent di-
mension of the universe. The only natural scale in this
theory is the mass of the scalar field at ¢mm which is
governed by the renormalization-group equation. This is
given by Eq. (4.14):
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when a <a, .. (5.5)

The ratio of the Compton wavelength (Acomp=27/m phys)
of the scalar particle to the radius of the universe is
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~ (MnR /Ry’

[where R, and a, are related by Eq. (4.16)], which de-
creases as the curvature increases. Therefore the apparent
size of the universe at the second minimum does increase
with increasing curvature. However, we cannot allow R
to be too large, otherwise the coupling constant A which is
also governed by the renormalization-group equation will
run to a value greater than one at which point our one-
loop approximation will break down. At a =a,, from Eq.
(4.15) we find Acomp/a =(47%/31)'/3. Although the ratio
is large (at least for sufficiently small A) the finite-size ef-
fect has to be taken into account. Thus the one-
dimensional conclusion from Coleman’s theorem does not
apply in this region and the asymmetrical ground state is
not precluded. The complete picture extending from ¢ 0
to ¢ ¢mm is a combination of one-dimensional and four-
dimensional effects. The former generates the barrier
while the latter gives the minimum.

In the case of Ref. 20, it was assumed the structure of
the potential is dominated by the renormalization-group
parts and the effects of finite size contained in the terms
f1,2 and f_y,, in Eq. (4.3) were dropped which plays an
important role in our analysis. Note the minimum at ¢;,
is, incidentially, not the “fake” minimum dlscussed by
Coleman and Weinberg which can lead to large klngb /M
and invalidate the one-loop assumption.?’

(3) Effect of curvature anisotropy on inflation. We
know an inflationary phase can happen if the system stays
in a false vacuum for a long time (in the Hubble time
scale). There are two ways to achieve this: (a) a barrier
between the true vacuum and the false vacuum (old
scenario) (b) a slow evolution of the state from the false
vacuum to the true vacuum (new scenario). If the phase
transition is of the second order neither condition can be
satisfied and inflation will not occur. Usually the effec-
tive potential used in the new inflationary model is that of
the flat-spacetime Coleman-Weinberg form. Now that it
has been generalized to curved spacetime, a natural ques-
tion arises as to whether and how inflation can be affected
by spacetime curvature. As we have seen in the case of
the conformal field, the symmetric state ¢ =0 will become
unstable if the space evolves very slowly (so that the kinet-
ic contribution'?!3 remains insignificant and the effective
potential concept can remain useful) from an oblate con-
figuration (a>0) to a prolate configuration (a <0). A
second-order phase transition will occur and inflation to
the extent necessary for cosmological purposes becomes
highly unlikely. If the field is minimally coupled to the
background, and the space is changing its shape and
volume in such a way that the two equal axes remain con-
stant (what we called constant-length deformation) then
squashing it towards any configuration will restore sym-

2?2
—AX

)"comp

=27 R>>R, (5.6)
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metry. If the shape of the universe is kept fixed, but the
size is varied, then the collapse of the universe will induce
symmetry breaking. As this phase transition is of the
first order, it in principle can allow inflation to occur.
However, we observe from Fig. 2a that by decreasing the
radius of the Einstein universe there arises a hlgh barrier
between (/) 0 and qSo This effect is, as explained in previ-
ous paragraphs, due to the linear term [Eq. (5.1)] which
dominates in the effective potential near ¢ =0. This bar-
rier which increases with the curvature will prevent any
new inflation® to occur (it is assumed that the barrier is
unaffected by the dynamics) and bring back the problems
of the old scenario.* Notice, however, when « is negative
(prolate shaped), the height of the barrier can be reduced
by a factor V'1+a. Nonetheless this does not help to gen-
erate new inflation. As is discussed below [Eq. (4.20)], if
a is less than — %, we cannot have symmetry breaking at
all. The barrier can at best be reduced by half and the
broad plateau one needs in new inflation is still lacking.
We are currently examining this problem more closely by
studying gauge fields and with higher-loop correction.

We have illustrated a few instances where curvature to-
pology and field-coupling effects can alter the flat-space
field-theoretical result distinctly. To return to the point
brought up in the Introduction, we want to add that the
implications on inflation are drawn from the assumption
that the Taub metric remains applicable as a faithful
description of the universe before the GU epoch. Notice
that even in the massless-minimal-field case where the ad-
vent of new inflation is ruled out by the presence of the
linear term, a phase transition by tunneling is still possi-
ble. Once the universe becomes vacuum dominated, it
will start expanding exponentially whereby all anisotropy
originally present will be wiped out rapidly.” .Upon enter-
ing the inflationary stage one would then need to use the
effective potential calculated for the de Sitter universe'® to
discuss the ensuing events. In this work we are interested
in discerning the initial conditions which may or may not
be conclusive to this transition. We are not equipped to
deal with the later stage of development.

Just exactly how the universe evolves from, say, a FRW
or Taub or mixmaster spacetime to a de Sitter spacetime
is a problem? which requires more in-depth analysis in all
three aspects—quantum field theoretical, statistical,
mechanical, and gravitational (curved spacetime), a prob-
lem which we hope to delve into in our future work.

(4) Dynamical and finite-temperature effects. As our
calculation is based upon a scalar theory in a static space-
time our discussion of curvature effect on inflation can
only be indicative. More realistically, one needs to consid-
er the dynamic (shear) and finite-temperature effects as
well. For completeness we shall make a few simple obser-
vations on these issues for now and leave the detailed dis-
cussion for a later communication.!* A simple model to
see the. effect of expansion anisotropy is- the Kasner
universe, where the shear is defined as Q and where the a;
and a; are the principal radii of curvature and their con-
formal time derivatives. The wave equation for each
mode k can be reduced to X + 92+Q X =0, where
X=a¢ and Q*= k2+(m ++A$2)a? is the natural fre-
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quency.’® From this, it is apparent that shear can indeed
be viewed as contributing to an effective (mass).? There-
fore even on the classical level a sufficiently large degree
of shear can restore the symmetry. The possibility of
symmetry restoration by shear was noticed by us earlier!?
and is discussed recently by Futamase.’!

As for the finite-temperature correction, one can exam-
ine its effect by using the result for the Einstein
universe,’® as it should yield the dominant contribution.
The temperature contribution to the effective mass is
(A/48)T*$ 2. Adding these factors into our consideration,
we observe that even in a highly deformed prolate config-
uration (with negative R) symmetry will remain unbroken
if the shear and/or temperature is sufficiently high. If
these additional contributions to the effective mass com-
bine with curvature in such a way that our zero-mass
analysis remains valid, we would still expect the behavior
of the linear (¢ 172 term in V(¢) for the minimal case to
dominate near the origin and lead to a first-order phase
transition. This is a possible candidate for preventing new
inflation. These problems are currently under investiga-
tion.
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APPENDIX A: GEOMETRICAL QUANTITIES
IN A DIAGONAL MIXMASTER UNIVERSE

By defining w°=dt, and w®=1[,0% the diagonal mix-
master metric (2.1) can be written in a Minkowski form
ds?=mg,0 ", where 9, =(—1,1,1,1). From the defin-
ing equations for the connection forms dw®+w®, Aw?=0
the connection coefficients w?, are easily calculated to be

w®, =k,w® where k,=I,/1, ,

o'y=c30°, where ¢,=+(d,+d;—d,), (AD
etc., and
di=1/lLl; .

All other w?, can be obtained by cyclically permuting the

indices. From the curvature form
R =do’ + 0% N\

‘ =Rab}cd‘0)c/\60d, c<d (A2)

one can obtain the Riemann tensor components in the
tetrad basis as

RO =k, +k2=I\/1,

R®3=kd—kjyc3—kjc,
) (A3)
RY03=¢3+c3ks

RY=kiky+c3ds—cic; ,

etc. The Ricci tensor components are



2416 T. C. SHEN, B. L. HU, AND D. J. O'CONNOR 31

. . . 1 3 132
L L 1 RYyn=-—"5—5-"7,
Roo=— [t 2+21, YR
L L, L o (A6)
(A4) 14
. R2323-R3131=Z—7
i I
Ry = E+(k1k2+03d3“016‘2)+(k1k3 +cady—cic3) , Thus,
etc., and the four-dimensional curvature scalar R is RpysR @B —4(R 151,R *? + R1353 RPB 4+ R 33R 1)
. .. . _ 3+ 8a+ 16a?
R:Raa=2 _ll_+_li+.{l 4114(1+(Z)2
L L L
4 3 a 9 2 3
= | =44 = o . (A7)
20 kyky 4k ks +koks+eydy +cads ¢ |16 s T e | O
+e3ds—cica—cie3—cye3) . (AS5)  From (A4)
For the Taub universe, [, =1,%I[3;. Define a deformation 1 1 1132
parameter to be R”=R22=-4—2[114_(112_132)]:__2 1—=-2 |,
X 21,%1, L 2
I
a=—-—1 (—l<a<w). 2 (A8)
1,2 I;
3 K=
For the static case under study, all /, and /,=0 in the !
above equations. From (A3) Thus,
_
3+ 8a+8a? 1 |3 a o k
RogR¥P=R >+ Ry>+ Ry’ =—"T7———=— =4~ — |+ 0(a’) . (A9)
aB 1 +Ro 33 4, %1 +a) 1,4 4+ > + 4
From (AS5)
R=R|1+Rn+R3= Stda | 3+a—a?)+0(a?) . - (A10)
20 %(1+a) 21,2
Thus,
R=L (2420 2100 . (A11)
14
The Weyl-tensor-squared term C? is given by
: 2
C?=Clp,sCPP =R 15,sR*P"®—2R ,gR*P+ +R?= (R 45,5R“P"*—R ;R “F) =2 RaﬁR“B—RT]
41 o 4a* 3
== +0(a”) . (A12)
34% (M+a)?  31°
One can check that the Gauss-Bonnet quantity vanishes,
G =R p,sR*P"®* 4R ,gR*P+ R*=0 . (A13)
Being a topological invariance, this is true for the whole Bianchi type-IX class.
APPENDIX B: DEFINITION AND EVALUATION OF THE Z FUNCTION
Let
o n2
Z(ro)= Y —5—— . (B1)

n=1 (n2+a)'

This series is similar to the one examined by Toms.*?> Following the same procedure, we find that Z(7,0) have poles at
r=+% —n. We denote the singular part by z_,(r,0) and the regular part by zy(r,0). Employing the Plana sum formula,
z(r,o) can be written as
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0 2 2 1 2
n o t t 1
= dt — dt + +I,.(o),
,Zl (n*+o) fo (t2+o) fo (t2+0) 20140y
where (B2)
L[> dt (1+ir)? (1—it)?
I(0)=i —_
§ fo e?™—1 [ [(1+it)+o]  [(1—itP+o]
The integral
- 2 3/2—r C(r—=3)
f t dt — o pod 2
0 (t*+0) 4 ')
vanishes at negative integer r (like the ¢ function), but diverges at =3 —n, where n=0,1,2,... . This is the only

divergent part on the right-hand side of Eq. (B2). One can expand the singular term in a Laurent series about the pole at
r=——nas

@ t? . V7 o" (=" |1 3
———dt=lim — - D—y¢(5—n)—1 ’
Js Cror PTG TB2—m) m |y T TD—YE —n) =l +00)
where (B3)
d
PY(x)= i InT'(x) .
Therefore,
n n
Z_,(n,a)zﬁ—sa—(_l) ,
4 T(3—n) n!
v R ‘ (B4)
" (=1)" 3 1 t 1
Zo(n,o)=—2 —% (n+1)— (> —n)—Ing]— dt I(o) .
° 4 I(3—n) n [$(n+ ¥z —n)=lnol fo (2 40)?" +2(1~+—0)3/2_"+ 7
For n=0,1,2, we obtain
Z_(0,0)=75, ’ (B5)
Z_(Lo)=—2, (B6)
4
Z_,2 a’ B7
_1( ,0')———T6“ . ( )
The expression for the Z’s are more involved, because of the presence of I,,,
' 1+Vi+4o 1 1 1
Zy(0,0)=—1-1 — I R B8
o(0) T Vite T2 igers 1) B
g o, 1+Vi4o o
Zy(l,0)=——+—1 — I , B9
o( ,0') 4+2n 2 2m+ 1(0') (B9)
2 2 Vit
Zo(2,0)=g—2+%lnlj;*zli——%a\/l-_+a+ Ly TFo+Io(0) . ' (B10)

Although an analytic result for I,(o), is not accessible we may seek the asymptotic expansions for particular ranges of o.
(See Appendix C.) For o>>1,

ZO(O,U)z—l——%ln% , (B11)
Zo(l,a):—% 1—1n—Z— , ; (B12)
Zo2,0)= L |1 4m? (B13)
T 16 |2 4
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Zo(0,0) =y —2EB3)o+ 2 E£(5)0%+0(d?) , (B14)

Zo(l,a)z—%——g—(l—i—y)—i—oz% (3)4+-0(0%) , (B15)
2 ]

zo(z,a)=—1;—o—5"2—y%+0(a3). (B16)

For o close to — 1, define y =0+ 1. When y~0, we can expand Z' in orders of y (prime means the n =1 term is exclud-
ed),

kd n? rir4+1)

Z'(r,o)= =D(r)—ryD( D4+ ——""D(r+42)y>+ -,
r,o Ez W 11yY r)—ryD(r+ 1)+ r+2)y*+
where (B17)
) 2
Dir)=3 —"

<, (n?—1)y

The D(r) function can be evaluated similar to the 0~0 case (replace r by n through =< —n) and the result is

Zy(2,0)= > a,y"=—0.4115-0.3522p +3.1781 X 10~ 2+ 0(»?) (B18)
n=0

Zy(1,0)= 3 b,y"=—0.7045+0.01271y +0.1314p>+0(y%) , (B19)
n=0 i

Zy(0,0)=3 c,p"=—0.02542—0.5256y +0.1755p2+0(y°) . (B20)
n=0 .

The values of D(—1) and D(—2) used here are evaluated by numerical method:
D(—1)=0.3504 , (B21)
D(—2)=9.361x10"2. (B22)
In summary
ap=—0.4115, a;=—0.3522, a,=3.178 1073,
bo=—0.7045, b,=0.01271, b,=0.1314, (B23)
co=—0.02542, ¢;=-—0.5256, ¢,=0.1755.

APPENDIX C: EVALUATION OF I, AND Z, AND THEIR ASYMPTOTIC EXPANSIONS

Cpe  dt (14it)? (1—it)?
n(0)=i f() e2m__ 1 [(1+it)2+0']3/2_n [(l—it)2+0']3/2_n (&)

(I) Large-o limit.

[(1+it)2+o.]—3/2+n:—r( ! ) fowe_[(1+it)2+a]xx1/2—ndx , (CZ)
—n

wfw

© V) 0 . k
(1+it)2[(1+it)2+o.]n—-3/2: f _m'—lt)e—ax 2 (——IJ)—-(1+it)2kx1/2_”+kdx

° F(%"") k=0
3
=B T
Therefore,
Lio)=i § =V § (=D 2k+1 F(%—n+k)0n_k_3/2, (C4)

k=ok!F(%——n)—_k§o k! 2(2k+3) 1(3—n)

where Eq. (3.416.1) of Ref. 33 has been used. The other terms in Z, can also be expanded in powers of o~!. Gathering
terms together, we get
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31
2 2 Viis o?
Zo2,0)= L 4 T ltVIte A LT (o) = ——+-—1n—, (C5)
32 8 2 16 4
o o, 14+Vi4o o g o, 0O
=———4—=1 — I =——4—In—,
Zy(1,0) 4 + o n 5 Ve b +1,(0) n + 4ln4 (C6)
+Vito 1 1 L +Io(a)=——1—%ln—z— . (e7))

1
Zo(0,0)=—1— —
0(0,0) 1—In 5 —!—\/1_1_0—!-2 1300/

These are the equations given in (B11) and (B13).
(II) Small- | o | limit. The evaluations of I, will be similar to part (I), but the expansion in (C2) is modified,

)2 N2, n—3/2__ A+it)  yppen, —a4ier, & (=DF & &
(1+i) [(1+it)* +0o] _fo xr(3/2_n)x e xkgo Kt o
o k k
=3 E T pnk) (it (C8)
K=o K!' T(3—n
o _ kF( —n+k) ®
1_12 — o, ezgt_l[(1+it)2"“2k—1——(1—it)z"“z"‘l]. (C9)

The behaviors of 2n =2k —1>0 or <O is quite different, and have to be treated differently. Instead of presenting the

most general cases, we consider here only I, I, I, which are the ones used in the text

_1k Tk
1) kf 1_+_'l-t)3—2k__(l_l~t)3—2k]

o0
=i 3¢ i)
—2

k=0
2 o k T(k—3+)
. (—“1) 2 k
=i|LR)+ZL()—Z-L(—-1)+ S L — 25k 3-2k) |, (C10)
2 8 kgs k' m(—3)
where
_ > dt vy oy
Lw)= [, S L+ —(1—it)"]
For v > 1, one can integrate L(—uv) as follows,
_ [*_4dt ® o —(14if) —(—itxq . v—1
L(—v)= fo em_ ) f [ HE_o X1 v=1dx
ix ix
— 11— |yl
0 27T F( ) [w 21 4 +27T
_..__f d v—1 —X( h 2
27Ty xxV e —ir) |cot T
= ‘;‘fowdxx""le“"coth%— fowdxx"_ze"‘}
. 1 T(v—1)
=—i|&(v) 27 1o |’ (C11)
where equations (3.311.11), (8.363.4), and (1.421.4) of Ref. 33 have been used
The integration of L(v) for other v’s can be done easily. The results for relevant L(v)’s are listed below
L3)=i [7 =3 (-2 =i (C12)
=] 0 G2m_q t— =173 »
. dt i
L=i [ S T 20=15 (C13)
© dt —2it , 1
L(-1)= fo e?™ 1 | 14¢2 =—il—3+7), (€14)
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— 1 _T@) | .

L(—3)= z[§(3) 5T | = ig3)—11, (C15)
. 1 TI(4) . 3 ‘

L(—5)=—i ‘g(s)——z ~TG) =—i[&(5)—3]. (C16)

Substituting (C12), (C13), and (C14) into (C10), we get

s 29 o o, @ (—pk Dk—7) ok —3)_ 1 1
=0 2wt s TV 2 T T O YT (€17
Similarly,
» (_1k , (k+7T) 1 1
[ L O (1 .y 3o (=17 & 2 _pn-L_
1 7+ (7 —y)—501 §<3>]+k§=‘,3 oo T Y LRk —1)— 5 — o |, (C18)
3
oy 1y_3 s oaresy 3. = (=DF TG 4E) 1 1
Iy=(y—+)—20[&(3)— 1]+ 20 E&(5) 4]+k§=‘,3 T ) L ey (C19)
With other relevant o expansions in (C5) to (C7), we get
2w 1y Dk—2) v
—l_9o o (=1 2] ok — 3ok
Zo2,0)=15— 5~ +k§=‘,3 I £k —3)0% | (C20)
Zo(1,0)=——%—%(1+”}/)+%02§(3)+0(03) , (c21
Zy(0,0)=y—3E3)o+FE(5)0*+0(a) . (C22)

(III) o=—1+y, |y| <<1. We can expand Z, in orders of y, but the n =1 term should be treated separately. Recall
(B17),

Z'(r,a):D(r)—rD(r+l)y+§(r+1)D(r+2)y2+ cee (C23)

D(r) can be evaluated similar to Z(r,o0),

8 t? 2 42 2 .o fQ24it)—f(2—it)
o=, Wy Js iyt Js e?m_1 a,
where . , (C24)
2
x
J=——.
I¥=e Ty
Again, for convenience, we define » == —n, so that the pole terms can be expanded out. From (B4)
Dom=YT— L L (tern=21,0,
4 I'(3—n)n! :
e ) (C25)
_ 77'__1_ 1 3 2 t 2
Do(n)=="— F(%_n)[xp(nﬂ)—z/;(2—;1)—1n<—1)]— I oAt g (=D,
and
e dt (24i)? _(2—it)?
I(—1)= — . C26)
n(=1 ’fo e _1 | [Q+itP—1P2"  [2—itP—1]72" (

The problematic term In(—1) will be canceled out by the same pathological part in

2 t2
f() (tZ_ 1)3/2—!1 dt..

Being finite the 7,,(—1) can be obtained by numerical integration [although one can expand about 2+ it and use small o
approximation for I,,(o) in (C23) to (C25) but it converges very slowly],
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I,(—1)=—9.5374x 107!, (C27)
I,(—1)=—6.5236x10"2, (C28)
Io(—1)=5.8785x1072 . (C29)
From (C38), one can obtain Dgy(n) as
D0(2>=§+%ln¥+?+lz(—1)=—0.4115 : (C30)
DO(1)=%_%_%1n-2izﬁ+11(—1)=—0.7045 o (€31)
8 24173 -
- —1 Io(—1)=—2.542x10"2 . Cc32

These values are used in (B18) and (B20). When n <0, both Z, and D, are convergent summations. One cannot use the
splitting as in (B4). The values of D(—1) and D(—2) used in (B20) are obtained by numerical summation.

APPENDIX D: RENORMALIZATION IN COVARIANT GEOMETRIC TERMS

In the text we have used two parameters; the curvature radius a and the deformation parameter a to describe the Taub
universe and systems therein. However, for various purposes where covariant expressions are needed, as in the renormal-
ization of massless fields, it is better to use covariant geometric terms like the scalar curvature and Weyl curvature
squared.

From Eqgs. (A8) and (A 10), we have (no approximation on «)

6 1 «a
R=—|14+— ,
a2 + 3 14«

64 1 ?
Cl=—— a
3 ¢t |1+«

These two equations can be solved for a2 and a to yield

6 cz "]
172 : 1/2 —1
3C? 3C?
a:% + "R—z [1— [i R2 (D2)

We will omit the + sign in front of (3C?/R?)!/? with the understanding that the sign of « is carried by that of
(3C%/R?)2. Since we are dealing with small || and only keeping terms up to O(a?), the corresponding expansion in
powers of (3C?/R?)!/? will be terminated at O(3C%/R?). Using (D1) and (D2), we can rewrite the bare effective poten-
tial Eq. (2.32) as

172

R? A 3C? c?
(1) __ 3 “a 27 A 23 =~
14477_2 4 B— 6 R2 +16(C+ 6B+ 72A)R2
U P 3 O O 7 D3
641> 6 60 2R

In the limit of large M2a?, we can use Eq. (3.4) for 4,B,C and drop all terms proportional to M ~2. Then (D3) can be
written as

A V'3C?
(1)_____i2212_ﬂ4___2_2
vV =T S ER2+ TM*ER — T M+ ol (2R —6M %)
3cl 2R2
+ 556 Llé —$M’ER+ M+ 5 C? lnagﬁ - (D4)

The In(o /a?u?) term can be expressed in terms of M>—£R /6:
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nO i —EtMa® | IMPgR/6 | | (ER/24)3CY/RY)
au? au? 2 —ER/6
—ln M*—ER /6 gv 3C? ER | _&cC? . D5)
u? 24M2 6M*> 384M*
Substituting (D5) into (D4), we get
_ £2R2 4 M’R 3 &£R> MR M* N C? —ER /6 (D)
4608 2 T8 T 1287 23047%  1927%  64w* 384077 u?

From this point on, we can proceed with the same renormalization scheme given in Ref. 12 and obtain the corresponding
counterterms in Ref. 12.

In the massless case, since M?=(A/2)$? is not a large quantity for the perturbative range of A, Eq. (D4) is not applic-
able. We have to go back to the original form of the effective potential (D3) and reevaluate the 4,B,C coefficients in
this limit. We find the effective potential can be cast into the general form

2 T2 2 2
V1=vO)tar |G [Ri+e |G |2+t |1-0| 55 | |RE™+ 2 |19 | S 1184,
where (D7)
1 C? 2, 1 c? 2
R R
For the conformal case, using Eq. (3.6), we get
€ — 1
' 864072
€)= 1 ln}i—
7192022 R,
g81=8,=0, (D8)
A
967 ’
3 | 3rdg c?
= 3272 ) l++3y—1&3) |

For the minimally coupled case, we get

1 R
€ =€/(R{)————=In—,
R 4608772 R,
R
6, =6(R,)+ In—
T 19207r R,
1/2
g = |35
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where a,,d,,e, are as in Eq. (4.10).
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