Skip to main content
Article
Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets
Australian Institute for Innovative Materials - Papers
  • Ziqi Sun, University of Wollongong
  • Ting Liao, University of Wollongong
  • Yuhai Dou, University of Wollongong
  • Soo Min Hwang, University of Wollongong
  • Min-Sik Park, University Of Wollongong
  • Lei Jiang, Beihang University
  • Jung Ho Kim, University of Wollongong
  • S X Dou, University of Wollongong
RIS ID
90324
Publication Date
1-1-2014
Publication Details

Sun, Z., Liao, T., Dou, Y., Hwang, S. Min., Park, M., Jiang, L., Kim, J. & Dou, S. Xue. (2014). Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nature Communications, 5 1-9.

Abstract
Two-dimensional (2D) transition metal oxide systems present exotic electronic properties and high specific surface areas, and also demonstrate promising applications ranging from electronics to energy storage. Yet, in contrast to other types of nanostructures, the question as to whether we could assemble 2D nanomaterials with an atomic thickness from molecules in a general way, which may give them some interesting properties such as those of graphene, still remains unresolved. Herein, we report a generalized and fundamental approach to molecular self-assembly synthesis of ultrathin 2D nanosheets of transition metal oxides by rationally employing lamellar reverse micelles. It is worth emphasizing that the synthesized crystallized ultrathin transition metal oxide nanosheets possess confined thickness, high specific surface area and chemically reactive facets, so that they could have promising applications in nanostructured electronics, photonics, sensors, and energy conversion and storage devices.
Grant Number
ARC/DP1096546
Citation Information
Ziqi Sun, Ting Liao, Yuhai Dou, Soo Min Hwang, et al.. "Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets" (2014) p. 1 - 9
Available at: http://works.bepress.com/sxdou/590/