Skip to main content
Presentation
Abs. Chronostratigraphy of the Fish Creek-VallecitoBasin, SW Salton Trough: A High-Fidelity Record of Slip on the West SaltonDetachment Fault and Subsidence in its Upper Plate
Eos Trans. AGU (2006)
  • R. J. Dorsey
  • B. A. Housen
  • Susanne U. Janecke, Utah State University
  • K. McDougall
  • M. Fanning
  • A. Fluette
  • G. J. Axen
  • C. R. Shirvell
Abstract

The Fish Creek-Vallecito basin contains a 5.1-km thick section of sedimentary rocks in the SW Salton Trough that range in age from 8.1 to 0.9 Ma. The section preserves a record of basin subsidence related to slip on the West Salton detachment fault (WSDF), which formed the main western rift-flank structure of the Salton Trough. We obtained a well-constrained chronology from compilation of existing (Johnson et al., 1983) and new paleomagnetic data, ages of two tuffs high in the section, and thicknesses calculated from the geologic map of Winker (1987) and our work in the lower 1.3 km. The tuffs yielded SHRIMP U-Pb ages of 2.56 ± 0.09 and 2.54 ± 0.09 Ma from single zircons. Geohistory analysis, corrected for paleobathymetry and global sea- level change, yields a decompacted subsidence curve with 5 segments bounded by abrupt changes in subsidence rate: (1) 0.46 mm/yr from 8.1 to 5.5 Ma; (2) 1.8 mm/yr from 5.5 to 5.2 Ma; (3) zero subsidence or slight uplift from 5.2 to 4.6 Ma; (4) 1.9 mm/yr from 4.6 to 3.2 Ma; and (5) 0.4 mm/yr from 3.2 to 0.9 Ma. The base of the Elephant Trees Fm, dated here at 8.1 Ma, provides the earliest well dated record of extension in the SW Salton Trough. Earliest marine incursion is dated at 6.3 Ma, and the first appearance of Colorado River sand coincides closely with the Miocene-Pliocene boundary (5.33 Ma). Because the base of the marine Imperial Group does not coincide with a change in subsidence rate, we suggest that initial marine incursion resulted from a latest Miocene global sea-level highstand superposed on steady subsidence. Thus, the inflections at 8.1 and 5.5 Ma are the two most likely ages for onset of slip on the WSDF, but 4.6 Ma is also possible. Variations in subsidence rate are not predicted by models for extensional detachment faults, and may reflect episodic pulsed fault slip and/or long-wavelength folding related to dextral-wrench tectonics. Rapid subsidence in segment 4 began during progradation of the Colorado River delta into the Imperial seaway, and continued during deposition of the fluvial Diablo and Olla formations. It ended at 3.2 Ma, 0.4 m.y. prior to the end of Colorado River sand input and transition to locally-derived Hueso Fm. This abrupt change in sediment composition occurred during slip on the WSDF, and may have been driven by an increase in sediment supply related to climate change. The entire basin has been inverted and completely exhumed, suggesting a rock uplift rate of ca. 6 mm/yr during the past 0.9 m.y. Rapid uplift coincides with modern transpressional deformation and strike-slip faults that cross-cut and terminated slip on the WSDF starting at 1.1-1.3 Ma (Steely, 2006; Lutz et al., in press; Kirby et al., in press).

Keywords
  • Chronostratigraphy,
  • Basin,
  • Trough,
  • Slip fault,
  • plate
Publication Date
January 1, 2006
Citation Information
Dorsey, R J,. Housen, B A,. Janecke, S U,. McDougall, K,. Fanning, M,. Fluette, A ,. Axen, G J,. Shirvell, C R., 2006, Chronostratigraphy of the Fish Creek-Vallecito Basin, SW Salton Trough: A High-Fidelity Record of Slip on the West Salton Detachment Fault and Subsidence in its Upper Plate: Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract T41D-1600. http://www.agu.org/meetings/fm06/waisfm06.html