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Abstract

Introduction Mammographic density is one of the strongest risk
factors for breast cancer and is believed to represent epithelial
and stromal proliferation. Because of the high heritability of
breast density, and the role of the insulin-like growth factor (IGF)
pathway in cellular proliferation and breast development, we
examined the association between common genetic variation in
this pathway and mammographic density.

Methods We conducted a cross-sectional analysis among
controls (n=1,121) who were between the ages of 42 and 78
years at mammography, from a breast cancer case-control study
nested within the Nurses' Health Study cohort. At the time of
mammography, 204 women were premenopausal and 917
were postmenopausal. We genotyped 29 haplotype-tagging
SNPs demonstrated to capture common genetic variation in
IGF1, IGF binding protein (IGFBP)-1, and IGFBP-3.

Results Common haplotype patterns in three of the four
haplotype blocks spanning the gene encoding IGF1 were
associated with mammographic density. Haplotype patterns in
block 1 (p=0.03), block 3 (p=0.009), and block 4 (p=0.007)
were associated with mammographic density, whereas those in

block 2 were not. None of the common haplotypes in the three
haplotype blocks spanning the genes encoding IGFBP-1/
IGFBP-3 were significantly associated with mammographic
density. Two haplotype-tagging SNPs in IGF1, rs1520220 and
rs2946834, showed a strong association with mammographic
density. Those with the homozygous variant genotype for
rs1520220 had a mean percentage mammographic density of
19.6% compared with those with the homozygous wild-type
genotype, who had a mean percentage mammographic density
of 27.9% (p for trend < 0.0001). Those that were homozygous
variant for rs2946834 had a mean percentage mammographic
density of 23.2% compared with those who were homozygous
wild-type with a mean percentage mammographic density of
28.2% (p for trend = 0.0004). Permutation testing
demonstrated that results as strong as these are unlikely to
occur by chance (p = 0.0005).

Conclusion Common genetic variation in IGF1 is strongly
associated with percentage mammographic density.

BMI = body mass index; Cl = confidence interval; IGF = insulin-like growth factor; IGFBP = insulin-like growth factor binding protein; SNP = single

nucleotide polymorphism.
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Introduction

Mammographic density is one of the strongest risk factors for
breast cancer. Women with 75% or more breast density are at
a fourfold to sixfold greater risk of breast cancer than women
with no density [1,2]. It has been hypothesized that mammo-
graphic density reflects cumulative exposure to estrogens [3];
however, accumulating evidence suggests that the mecha-
nism by which mammographic density influences breast can-
cer may be independent of circulating estrogen levels [4-6].

The insulin-like growth factor (IGF) pathway has a critical role
in cell proliferation, as well as in the growth and development
of the breast [7]. Because mammographic density is associ-
ated with epithelial and stromal proliferation [8,9], and circulat-
ing IGF1 and IGF binding protein (IGFBP)-3 are associated
with premenopausal breast cancer in some studies [10,11],
but not all [12-14], the IGF pathway is a compelling candidate
for examination with respect to mammographic density. Circu-
lating IGF1 levels have been positively associated with mam-
mographic density [15,16], and IGFBP-3 levels inversely with
mammographic density in premenopausal women [15-17],
although no association has been observed in postmenopau-
sal women [15,16].

It is estimated from twin studies that genetics accounts for 60
to 67% of the variation in mammographic density [18]. Given
the high degree of heritability [18,19], identifying the genes
involved is important for understanding the biology of breast
density and how it influences breast cancer risk. Several stud-
ies have addressed the role of polymorphisms in estrogen syn-
thesis and metabolizing genes and mammographic density,
with inconclusive results [20-26]. Evidence relating the -202
promoter SNP (rs2854744) in IGFBP-3 to mammographic
density has also been mixed [27,28]. No studies so far have
examined the association between polymorphisms in IGF1 or
IGFBP-1 and mammographic density. Genetic variation in
genes involved in the IGF pathway may reflect long-term or life-
time exposure of circulating levels of IGF1, IGFBP-1, and
IGFBP-3. We conducted a cross-sectional study in the
Nurses' Health Study (n = 1,121) to assess the relation
between common genetic variation in these genes and mam-
mographic density. So far, no study has comprehensively
examined the relation between common genetic variation in
these genes and mammaographic density.

Materials and methods

Study design and population

The Nurses' Health Study was initiated in 1976, when
121,700 US registered nurses aged 30 to 55 years returned
an initial questionnaire [29]. Information on body mass index
(BMI), reproductive history, age at menopause, and postmen-
opausal hormone use as well as diagnosis of cancer and other
diseases are updated every 2 years through questionnaires.
During 1989 and 1990, blood samples were collected from
32,826 women. Detailed information regarding blood collec-
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tion methods has been published [30]. In general, blood sam-
ples were returned within 26 hours of blood draw, then
immediately centrifuged, separated into plasma, red blood
cells, and buffy coat fractions, and stored in freezers under lig-
uid nitrogen. The follow-up rate among women who provided
blood samples was 99% up to and including 1998.

We conducted a cross-sectional analysis among controls from
a breast cancer case-control study nested within the Nurses'
Health Study cohort. This nested case-control study, examin-
ing plasma markers and genetic variation with respect to
breast cancer risk, included breast cancer cases diagnosed
after blood collection but before 1 June 1998, and matched
controls [31]. Controls were matched to cases on year of birth,
menopausal status, postmenopausal hormone use, time of
day, month, and fasting status at time of blood draw. Mam-
mography collection was targeted to 1,329 breast cancer
controls, with DNA samples, through the 1998 follow-up
cycle. At the time of mammography collection, 1,297 of these
participants were alive and eligible to receive letters for partic-
ipation in this study. Of these women, 1,189 (92%) gave per-
mission to obtain mammograms; 5% did not give permission,
and 3% reported not having had a mammogram. For all con-
senting women, we attempted to obtain the mammograms
taken as close to the date of blood collection as possible. We
successfully obtained mammograms from 1,142 controls
(96% of those consenting); 21 of these were excluded for not
having usable film mammograms. Women for whom we
obtained usable mammograms (n = 1,121) were very similar
to those whom we were unable to obtain mammograms with
respect to age, BMI, and circulating hormone levels [4]. This
study was approved by the Committee on the Use of Human
Subjects in Research at Brigham and Women's Hospital.

Mammographic density measurements

To assess mammographic density, the craniocaudal views of
both breasts were digitized at 261 pum per pixel with a Lumysis
85 laser film scanner, which covers a range of 0 to 4.0 optical
density. The software for computer-assisted thresholding was
developed at the University of Toronto [32]. The film screen
images were digitized and viewed on the computer screen. For
each image, the observer set one threshold level to define the
edge of the breast and a second threshold delineating the
dense area of the breast, within the original threshold region.
The Cumulus software calculated the total number of pixels
within the entire region of interest and within the area identified
as dense. Using these values, the software program calcu-
lated the percentage of the breast area that was dense. This
measure of mammographic breast density was highly repro-
ducible within this study. The within-person intraclass correla-
tion coefficient was 0.93 [33]. We used the average
percentage density of both breasts for this analysis. Previous
studies have shown similar results when the breast density of
a random side (right or left) or the average of the two are used
[16]. We also evaluated the association of IGF1, IGFBP-1,



and IGFBP-3 genotypes and haplotypes with the absolute
area of mammographic density, but because results were sim-
ilar and percentage breast density has consistently been a
stronger predictor of breast cancer risk, we present the results
for percentage mammographic density only.

SNP selection and genotyping

SNP discovery and haplotype-tagging SNP selection was
conducted in the Multiethnic Cohort [34,35]. Novel SNPs
were identified by resequencing of the exons in IGF1, IGFBP-
1, and IGFBP-3 in 95 cases of advanced prostate cancer and
95 advanced breast cancer from equal numbers of US Cauca-
sians, Latinos, Japanese, native Hawaiians, and African Amer-
icans [36].

To identify regions of strong linkage disequilibrium, 64 SNPs
in the gene encoding IGF1 and 36 SNPs in the genes encod-
ing IGFBP-1 and IGFBP-3 were genotyped in a panel of 349
cancer-free women from the Multiethnic Cohort [37,38]. Pair-
wise linkage disequilibrium between SNPs was determined
with the D' statistic [39]. Regions of strong linkage disequilib-
rium (that is, haplotype blocks) were defined with the use of
criteria from Gabriel and colleagues [40]. Haplotype-tagging
SNPs were selected for a Caucasian population using the pro-
gram TagSNPs [41]. In brief, the selection of haplotype-tag-
ging SNPs is based on R2,, a measure of the correlation
between observed haplotypes and those predicted by the tag-
ging SNP genotypes [42].

Fourteen SNPs tag the common haplotypes in four haplotype
blocks of strong linkage disequilibrium in the gene encoding
IGF1, and 13 SNPs tag the common haplotype patterns in
three haplotype blocks across the genes encoding IGFBP-1
and IGFBP-3 among Caucasians (Table 1). Two additional
SNPs (rs6670 and rs2453839) in IGFBP-3 did not fall into
these blocks. As part of the Breast and Prostate Cancer
Cohort Consortium (BPC3), these 29 SNPs were genotyped
in the controls from the breast cancer nested case-control
study described above (Table 1).

Genotyping

Genotyping was conducted with a fluorescent 5' endonucle-
ase assay and the ABI-PRISM 7900 for sequence detection
(TagMan) [37,38]. Assay characteristics for genotyping the
haplotype-tagging SNPs in IGF-1, IGFBP-1, and IGFBP-3 are
available on a public website [43]. For quality control, approx-
imately 10% of samples were included as blinded duplicates
in the genotyping runs. The concordance for replicate samples
was greater than 99%.

Statistical analysis

Haplotype frequencies were estimated by using expectation
substitution [44,45] implemented in SAS PROC haplotype
(SAS Institute, Cary, NC, USA). Haplotypes occurring at fre-
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quencies less than 0.05 were grouped together as a compos-
ite category.

We used haplotype—trend regression models to determine
whether haplotypes are associated with mammographic den-
sity [44,45]. Because percentage mammographic density is
not normally distributed, we used a square-root transformation
to improve the normality of the distribution. Thus, square-root-
transformed percentage mammographic density was the
dependent variable in multivariate linear regression models
with individual haplotypes as independent variables. To deter-
mine percentage mammographic density for women with spe-
cific genotypes, we back-transformed assuming the covariates
of typical woman in this study (namely postmenopausal, 57
years old, BMI of 25, no family history of breast cancer, no per-
sonal history of benign breast disease, and so on). We
assumed an additive model in which haplotype-specific
parameters represent the per-haplotype increase in square-
root-transformed percentage mammographic density. To test
the global null hypothesis of no association between the com-
mon haplotype patterns within each haplotype block and per-
centage mammographic density, we computed F statistics
comparing the model with covariates and block-specific hap-
lotypes with a model without haplotypes. To assess whether
specific haplotypes in each block were associated with mam-
mographic density, we included each haplotype in the model
individually in comparison with all other haplotypes. Rare hap-
lotypes, with a combined frequency of less than 5%, were not
included in analyses.

To determine whether mammographic density is associated
with single causal variants, we also examined the relation
between the individual haplotype-tagging SNPs in IGF1,
IGFBP-1, and IGFBP-3 in relation to mammographic density.
We used generalized linear models adjusted for covariates to
determine the mean percentage breast density according to
genotype. To determine whether there was a linear trend with
increasing variant alleles, we calculated P values from Wald
statistics including an ordinal variable for genotype.

Covariate information at the time of the mammogram was
assessed by using data from biennial questionnaires before
the date of the mammogram. We included the following known
predictors of mammographic density in multivariate models:
age (continuous), BMI (continuous), alcohol consumption
(none, less than 5 g/day, 5 to 14.9 g/day, more than 15 g/day),
age at first birth/parity (nulliparous, age at first birth less than
25 years, age at first birth 25 to 29 years, age at first birth 30
years or more), history of benign breast disease (yes/no), fam-
ily history of breast cancer (yes/no), menopausal status/post-
menopausal hormone use (premenopausal, postmenopausal
never user, postmenopausal current user, postmenopausal
past user). Although it is unlikely that these factors are con-
founders of the haplotype and mammographic density relation-
ship, these variables do explain substantial variation in the
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Table 1

IGF1, IGFBP-1 and IGFBP-3 haplotype-tagging SNPs

SNP number SNP ID Nucleotide change Minor allele Allele frequency
IGF1
Block 1
1 rs7965399 C/IT C 3.8
2 rs35767 AIG A 16.2
Block 2
3 CV11752586 AIG A 22.5
4 rs1019731 AIC A 14.6
5 rs2195239 C/G G 22.7
Block 3
6 CV346219 AIG G 28.4
7 rs2373722 AIG A 8.1
8 rs1549593 G/T T 14.0
9 rs1520220 C/G G 19.0
10 Cv2801104 G/C G 14.1
Block 4
11 rs2946834 G/A A 33.1
12 rs764876 C/IG C 25.0
13 rs4764695 AIG G 49.6
14 rs1996656 AIG G 17.3
IGFBP-1 and IGFBP-3
Block 1
15 CV395979 AIG G 30.2
16 rs1553009 AIG A 19.7
17 CV395975 G/C G 241
18 rs2201638 A/G A 2.5
19 rs1065780 G/A A 38.5
Block 2
20 rs4988515 CIT T 4.4
21 rs4619 AIG G 34.8
22 rs1908751 (o72) T 30.4
23 rs2270628 CIT T 19.1
Block 3
24 rs3110697 AIG A 42.7
25 rs2854746 G/C C 38.1
26 rs2854744 T/G T 45.0
27 rs2132570 T/G T 21.4

Additional SNPs2
28 rs6670 T/A A 21.1
29 rs2453839 T/C C 19.8

IGF, insulin-like growth factor; IGFBP, insulin-like growth factor binding protein. 2Additional SNPs in IGFBP3 do not fit into any haplotype blocks.
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outcome. Estimates of B were very similar between age-
adjusted and multivariate-adjusted models; we therefore
present the multivariate-adjusted results only.

Because of the multiple testing in these analyses, we con-
ducted permutation testing to assist in interpreting statistically
significant associations [46,47]. Mammographic density was
randomly permuted 10,000 times, and all haplotype-tagging
SNPs and haplotypes in IGF1 were tested for association with
the permuted outcome. The smallest observed p value over
these tests was compared with the distribution of permuted p
values. For example, if the lowest observed p value was 0.05
and this value marked the 25th centile of the permuted distri-
bution, then the permutation p value would be 0.25.

Percentage mammographic density is lower in postmenopau-
sal women than in premenopausal women. However, because
the estimates of B were very similar between both groups of
women, we present the results for all women combined, taking
menopausal status into account in the analysis. Data analysis
was conducted with SAS statistical software version 9.1 (SAS
Institute, Cary, NC, USA). All p values presented are two-sided
tests of statistical significance.

Results

This cross-sectional study examining common genetic varia-
tion in the IGF pathway and mammographic density included
1,121 women between the ages of 42 and 78 years at mam-
mography. A total of 204 women were premenopausal at the
time of their mammogram, with a mean age at mammography
of 49.1 + 3.4 years (results are shown as means * SD).
Among premenopausal women, the mean percentage mam-
mographic density was 39.5 + 22.4 (range 0.6 to 90.3). In all,
917 women were postmenopausal at the time of their mammo-
gram, with a mean age at mammography of 60.7 + 6.1 years.
Among postmenopausal women, the mean percentage mam-
mographic density was 23.7 + 18.8 (range 0.0 to 86.5). Of the
postmenopausal women, 34% were currently using postmen-
opausal hormones, and 22.7% were former users at the time
of their mammograms. Of the women in the study, 98.8% were
Caucasian. Women who provided a blood sample in the
Nurses' Health Study are similar to non-Hispanic white women
in SEER (Surveillance Epidemiology and End Results) with
regard to breast cancer risk [48,49].

Using haplotype-tagging SNPs, we inferred common haplo-
types within regions of linkage disequilibrium in the genes
encoding IGF1, IGFBP-1, and IGFBP-3. There were four
blocks of linkage disequilibrium in the gene encoding IGF1;
we observed two common (more than 5%) haplotypes in block
1, four in block 2, six in block 3, and six in block 4 (Table 2).
IGF1 haplotype frequencies were very similar to those
observed in the Caucasian population of the Multiethnic
Cohort [37]. The common haplotypes in IGF1 accounted for
95.7 to 99.3% of the chromosomes. The haplotype-tagging
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SNPs for IGFBP-1 and IGFBP-3 overlapped, resulting in three
haplotype blocks covering both genes. We observed five com-
mon haplotypes in block 1, four in block 2, and five in block 3
(Table 3). The common haplotypes in genes encoding IGFBP-
1/IGFBP-3 accounted for 94.0 to 96.7% of the
chromosomes.

The common haplotype patterns in three of the four haplotype
blocks in IGF1 were significantly associated with mammo-
graphic density (Table 2). There was a modest association
between block 1 and mammographic density (p = 0.03), and
haplotype IGF1-1B (p = 0.009) within this block was associ-
ated with mammographic density. Block 2 was unrelated to
mammographic density. Block 3 was associated with
mammographic density in a global test of association (p =
0.009) and haplotypes IGF1-3D (p = 0.003), IGF1-3E (p =
0.02), and IGF1-3F (p = 0.005) in this block were each indi-
vidually associated with mammographic density. For a typical
woman in this study (that is, postmenopausal, 57 years old,
BMI of 25, no family history of breast cancer, no personal his-
tory of benign breast disease, and so on), having two copies
of IGF1-3D haplotype is associated with a mammographic
density that is 5.9% lower than a woman with zero copies of
the haplotype. Block 4 was also associated with mammo-
graphic density (p = 0.007), and haplotypes IGF1-4D (p =
0.02), IGF1-4E (p = 0.05), and IGF1-4F (p = 0.002) in this
block were each individually associated with mammographic
density. For the same woman described above, having two
copies of the IGF1-4F haplotype is associated with a mammo-
graphic density 6.5% lower than a woman with zero copies.
Although the study had limited power, no substantial or con-
sistent differences were noted when analyses were stratified
by menopausal status (Additional file 1). None of the three
haplotype blocks in the genes encoding IGFBP-1/IGFBP-3
were significantly associated with mammographic density in
global tests of association (F statistic p > 0.05; Table 3).

We observed significant associations between four IGF1 hap-
lotype-tagging SNPs and percentage mammographic density.
SNP 9 (rs1520220) and SNP 11 (rs2946834) in IGF1
showed the strongest association with mammographic den-
sity (Table 4). Those with the G/G genotype for SNP 9
(rs1520220) had a mean percentage mammographic density
of 19.6, in contrast with those with the C/C genotype, who
had a mean percentage mammographic density of 27.9 (p for
trend < 0.0001; Table 4). Women with the A/A genotype for
SNP 11 (rs2946834) had a mean percentage mammographic
density of 23.2, in contrast with those with the G/G genotype,
who had a mean percentage mammographic density of 28.2
(p for trend = 0.0004; Table 4).

Among the haplotype-tagging SNPs in the genes encoding
IGFBP-1/IGFBP-3, SNP 19 (rs4619) (p for trend = 0.006;
Table 5) was associated with mammographic density. There
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Table 2

Common insulin-like growth factor (IGF) haplotypes2 and percentage mammographic density, Nurses' Health Study

Block 1 (p=0.03)b Block 2 (p=0.95)b

Block 3 (p=0.009)P

Block 4 (p=0.007)P

Haplotype ~ Frequency Be(95%Cl)  Haplotype  Frequency  B°(95%CIl) Haplotype Frequency ~ B°(95%Cl)  Haplotype Frequency B¢ (95%Cl)
(percentage) (percentage) (percentage) (percentage)
1A (TG) 829 0.16 2A(GCC) 55.0 -0.002 3A (AGGCQ) 465 0.08 4A(GGAA) 424 0.09
(-0.04 to (0.15t0 (0.07 to (-0.06 to
0.35) 0.14) 0.22) 0.23)
1B (TA) 133 -0.29 2B(GCG) 226 -0.04 3B (AGGCQG) 136 0.03 4B(ACGA) 143 -0.03
(-052 to- (-0.21to (0.18to (0.24 t00.19)
0.07)d 0.14) 0.24)
Rare 39 2C(AAC) 127 0.03 3C(AGTCC) 11.0 0.15 4C(GGGA) 145 0.19
(0.17to (-0.09 to (0.02to
0.24) 0.38) 0.41)
2D(ACC) 9.0 0.03 3D 9.1 -0.39 4D(ACGG) 8.8 -0.34
(GGGGO)
(-0.23to0 (-0.65 to- (-0.61 to-
0.29) 0.14)° 0.06)"
Rare 0.8 3E (GGGCC) 82 0.35 4E(GGGG) 8.1 028
(007 to (0.0007 to
0.62)f 0.55)
3F (GAGGO) 7.6 -0.38 4F(AGAA) 76 -045
(-0.65 to- (-0.73 to-
0.12)9 0.16)i
Rare 4.0 Rare 4.3

Cl, confidence interval. 2iGF1 haplotype blocks are based on SNPs defined in Table 1. Block 1, SNPs 1 and 2; block 2, SNPs 3 to 5; block 3,
SNPs 6 to 10; block 4, SNPs 11 to 14. bGlobal test of association based on F statistic comparing model with haplotypes in block and covariates
with covariates only. ¢} coefficients from models that used square-root-transformed mammographic density as the dependent variable.
Multivariate-adjusted models including age (continuous), body mass index (continuous), alcohol consumption (category), age at first birth/parity,
history of benign breast disease (yes/no), family history of breast cancer (yes/no), menopausal status/postmenopausal hormone use
(premenopausal, postmenopausal never user, postmenopausal current user, postmenopausal past user). Results in bold show significant
differences: dp = 0.009; ¢p = 0.003; fp = 0.02; 9p = 0.005; hp = 0.02; ip = 0.05; ip = 0.002.

was an absolute difference of 3.6% between the homozygous
variant and homozygous wild-type genotypes (Table 5).

for percentage mammographic density. The most disparate
results were for haplotype 3E, for which § = 0.19 (95% CI -
0.15 to 0.53) for absolute density and B = 0.35 (95% CI 0.07
to 0.62) for percentage density. Although we have both geno-
type information and mammographic density measurements
on the cases in this study, we did not believe that the cases
could serve as a valid replication set. However, we did con-
duct analyses including both cases and controls, adjusting for
case status, and found that the interpretation of the results
remained the same.

To estimate how often these results might have occurred by
chance we conducted permutation testing in which percent-
age mammographic density was randomly permuted. The
most significant association we observed was between SNP
9 (rs1520220) and mammographic density, with a p for trend
of less than 0.0001. In 10,000 permutations, a p value this sig-
nificant occurred less than 0.05% of the time (multiple com-
parisons corrected p = 0.0005). Age and BMI accounted for
289% of the variation in percentage mammographic density (R2
= 0.28); inclusion of SNP 9 in this model explained an addi-
tional 1% of variation (R2= 0.29).

Discussion

This is the first study to comprehensively examine the genetic
variation of IGF1, IGFBP-1, and IGFBP-3 in relation to mam-
mographic density. We found strong evidence that common
genetic variation in IGF1 is associated with mammographic
density. Common haplotype patterns in three out of four hap-
lotype blocks in IGF1; seven specific haplotypes within these
blocks were associated with percentage mammographic den-
sity. Overall, IGFBP-1/IGFBP-3 haplotype blocks were not
associated with mammographic density. We found four SNPs
in the gene encoding IGF1 and one SNP in the gene encoding

In general, the associations between SNPs and haplotypes in
IGF1, IGFBP-1, and IGFBP-3 with absolute mammographic
density were similar to, but weaker than, those observed with
percentage mammographic density. For example, in IGF1 the
regression coefficient between haplotype 3D and absolute
density was p = -0.31 (95% confidence interval (Cl) -0.63 to
0.007), in comparison with B =-0.39 (95% CI -0.65 to -0.14)
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Common IGFBP-1 and IGFBP-3 haplotypes? and percentage mammographic density, Nurses' Health Study

Block 1 (p=0.17)b

Block 2 (p=0.11)b

Block 3 (p = 0.53)P

Haplotype Frequency Bc(95% Cl)  Haplotype Frequency Bc(95% CI)  Haplotype Frequency e (95% CI)
(percentage) (percentage) (percentage)
1A (AGCGQG) 24.7 -0.12 2A (CACC) 35.5 -0.10 3A (GCTG) 37.0 -0.004
(-0.29 to (-0.25 to (-0.16 to
0.04) 0.06) 0.15)
1B (AGGGG) 22.6 -0.06 2B (CCTC) 27.8 -0.07 3B (AGGT) 20.6 -0.005
(-0.28 to (-0.23 to (-0.19 to
0.12) 0.08) 0.17)
1C (AACGA) 19.5 0.07 2C (CGCC) 17.3 0.17 3C (AGGG) 19.4 0.003
(-0.11 to (-0.08 to (-0.19 to
0.25) 0.37) 0.19)
1D (GGCGA) 18.7 0.20 2D (CGCT) 13.4 0.15 3D (GGGG) 13.0 0.02
(0.01 to (-0.06 to (-0.20 to
0.38)d 0.37) 0.24)
1E (GGCGQG) 10.0 -0.05 Rare 6.0 -0.18 3E (GGTG) 6.7 0.18
(-0.29 to (-0.57 to (-0.12 to
0.19) 0.20) 0.48)
Rare 4.5 Rare 3.4

Cl, confidence interval; IGFBP, insulin-like growth factor binding protein. 2IGFBP1/IGFBP3 haplotype blocks are based on SNPs defined in Table
1. Block 1, SNPs 15 to 19; block 2, SNPs 20 to 23; block 3, SNPs 24 to 27. *Global test of association based on F statistic comparing model
with haplotypes in block and covariates with covariates only. B coefficients from models that used square-root-transformed mammographic
density as the dependent variable. Multivariate-adjusted models including age (continuous), body mass index (continuous), alcohol consumption
(category), age at first birth/parity, history of benign breast disease (yes/no), family history of breast cancer (yes/no), menopausal status/
postmenopausal hormone use (premenopausal, postmenopausal never user, postmenopausal current user, postmenopausal past user). Results in

bold show significant differences: 9p = 0.04.

IGFBP-1 that were significantly associated with percentage
mammographic density. These results suggest that inherited
variation in the IGF pathway has an important role in mammo-
graphic density.

We observed absolute mean differences in mammographic
density in the range 4 to 8% for specific haplotype-tagging
SNPs in IGF1, comparing homozygous variants with
homozygous wild-types. These differences are meaningful and
are similar to those observed with hormonal interventions. In
the Women's Health Initiative Randomized Trial, women rand-
omized to estrogen plus progestin therapy had a mean
increase of 6.0% in percentage mammographic density after
1 year, in contrast with 0.9% decrease among women on pla-
cebo (p < 0.001) [50]. Similarly, the Postmenopausal Estro-
gen/Progestin Intervention (PEPI) Trial observed significant
absolute differences in percentage mammographic density
over 1 year ranging from 3.1 to 4.8% for women randomized
to different estrogen plus progestin regimens compared with
placebo [51]. In a randomized trial of tamoxifen in high-risk
women, there was a mean absolute reduction in percentage
mammographic density of 5.8%, comparing women on
tamoxifen with those on placebo [52]. It is estimated that a dif-

ference of 5% in mammographic density is associated with a
7% difference in breast cancer risk [1].

Data from cross-sectional studies suggest that circulating lev-
els of IGF1 are positively associated with mammographic
density, whereas levels of IGFBP-3 are inversely associated in
premenopausal women [15-17,53]. However, no association
between either has been observed in postmenopausal women
[15,16,53]. The absence of an association in postmenopausal
women may be explained by the difference in levels of circulat-
ing IGF1 and IGFBP-3 and mammographic density by meno-
pausal status. Mean levels of IGF1 tend to be higher, and
levels of IGFBP-3 tend to be lower in premenopausal women
than in postmenopausal women [15,16,53]. Mammographic
density is also lower in postmenopausal women than in pre-
menopausal women.

Our ability to detect an association between IGF1 haplotypes
with mammographic density in a primarily postmenopausal
population may be because genetic variation may more closely
reflect the most relevant lifetime exposures of IGF1 (for exam-
ple tissue level) than single estimates of circulating levels. In
addition, genotype is a stable characteristic and is measured
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Table 4

Mean percentage mammographic density (MD) according to insulin-like growth factor haplotype-tagging SNPs

SNP Genotype n Mean percentage MD2 p for trendP

1 C/IC 2 19.1 0.13
(e72) 71 29.5
T 1,035 26.5

2 A/A 20 29.1 0.07
A/G 308 25.0
G/G 748 27.4

3 A/A 51 27.3 0.74
A/G 388 26.6
G/G 662 26.5

4 A/A 23 25.9 0.89
AIC 284 26.7
C/C 816 26.8

5 G/G 47 24.7 0.74
C/G 403 26.6
C/IC 657 26.8

6 G/G 88 24.3 0.05
A/G 419 26.4
A/A 569 27.6

7 A/A 7 20.1 0.007
A/G 155 24.7
G/G 934 27.4

8 T 20 29.3 0.18
G/T 255 27.9
G/G 776 26.4

9 G/G 36 19.6 <0.0001
C/G 325 24.8
C/IC 730 27.9

10 G/G 19 25.3 0.83
G/C 262 27.4
C/IC 809 26.6

11 A/A 117 23.2 0.0004
G/A 469 26.4
G/G 503 28.2

12 C/IC 59 24.3 0.16
C/G 425 26.5
G/G 605 27.2

13 G/G 270 27.0 0.60
A/G 570 26.6
A/A 278 26.8

14 G/G 26 26.1 0.82
A/G 320 26.3
A/A 750 26.9

aMultivariate-adjusted models including age (continuous), body mass index (continuous), alcohol consumption (category), age at first birth/parity, history of benign
breast disease (yes/no), family history of breast cancer (yes/no), menopausal status/postmenopausal hormone use (premenopausal, postmenopausal never user,
postmenopausal current user, postmenopausal past user); bp for trend based on inclusion of genotype as an ordinal variable in models with square-root-transformed
mammographic density as the dependent variable. Results in bold are significant (p < 0.05).
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Mean percentage mammographic density (MD) according to IGFBP-1 and IGFBP-3 haplotype-tagging SNPs

SNP Genotype n Mean percentage MD2 p for trendb

15 G/G 120 26.4 0.39
A/G 452 27.3
A/A 548 26.2

16 A/A 36 24.0 0.41
A/G 377 28.0
G/G 707 26.3

17 G/G 56 25.3 0.75
C/G 405 26.9
c/C 635 26.5

18 A/A 1 11.9 0.18
A/G 59 23.8
G/G 1,060 26.9

19 A/A 158 28.4 0.006
G/A 543 27.3
G/G 409 24.8

20 T/T 5 21.7 0.06
CIT 97 23.6
c/C 1,017 27.0

21 G/G 120 28.2 0.81
A/IG 502 25.6
A/A 465 27.3

22 T 108 28.1 0.44
(o72) 441 271
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Table 5 (Continued)

Mean percentage mammographic density (MD) according to IGFBP-1 and IGFBP-3 haplotype-tagging SNPs

C/IC 557 26.3

23 /T 35 28.2 0.67
(e72) 336 26.9
C/C 715 26.5

24 A/A 195 24.8 0.55
AIG 517 27.4
G/G 378 26.5

25 C/C 148 25.5 0.86
G/C 511 27.0
G/G 383 26.3

26 /T 202 26.4 0.87
T/G 605 26.2
G/G 282 26.5

27 T/T 49 23.4 0.80
T/G 362 27.4
G/G 673 26.4

28 A/A 47 27.6 0.65
T/A 359 26.2
T/T 700 26.9

29 C/C 44 24.0 0.16
T/C 346 26.2
/T 706 271

IGFBP, insulin-like growth factor binding protein. aMultivariate-adjusted models including age (continuous), body mass index (continuous), alcohol
consumption (category), age at first birth/parity, history of benign breast disease (yes/no), family history of breast cancer (yes/no), menopausal
status/postmenopausal hormone use (premenopausal, postmenopausal never user, postmenopausal current user, postmenopausal past user); bp
for trend based on inclusion of genotype as an ordinal variable in models with square-root-transformed mammographic density as the dependent
variable. The result in bold is significant (p < 0.05).
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with very high accuracy, whereas circulating levels can change
over time and are measured with relatively lower accuracy.
Thus, measurement error may contribute to the lack of associ-
ation observed between circulating levels of IGF and postmen-
opausal mammographic density [15,16]. In addition,
circulating levels of IGF are influenced by non-genetic factors
such as diet [54,55], physical activity [54,55], exogenous hor-
mones [56-58], and anthropometry [54-56], which may
explain a greater portion of variability than genetics.

The variant allele of rs1520220 in IGF1 was inversely associ-
ated with mammographic density in the current study. In con-
trast, the variant allele has been positively associated with
circulating levels of IGF1 in premenopausal women in another
study [59]. It is unclear what the functional significance of the
haplotype-tagging SNPs are. The SNPs in IGF1 associated
with mammographic density are located in introns and in the
region 3' to the gene, suggesting that if these SNPs are in fact
predisposing variants they may function through influencing
promotion and/or transcription. It is also possible that these
SNPs are in linkage disequilibrium with variants in coding
regions, which may directly affect the protein. These associa-
tions need to be replicated and it remains to be seen whether
the association between IGF1 genetic variation and mammo-
graphic density is mediated through circulating levels.

Because of previous evidence linking the -202 polymorphism
in the promoter region of IGBP-3 (rs2854744; SNP26) to cir-
culating levels of IGFBP-3 [28,60,61], two studies examined
this polymorphism in relation to mammographic density, with
inconsistent results [27,28]. One reported a significant asso-
ciation between the variant and mammographic density
among premenopausal women (n = 206) but not among post-
menopausal women (n = 206) [28]. The second study
reported no association in premenopausal women (n = 139)
or postmenopausal women (n = 158) [27]. We did not
observe an association between this polymorphism and mam-
mographic density (n = 1,089).

The results of this study suggest that common genetic varia-
tion in IGF1 is associated with percentage mammographic
density. It is unlikely that these results are due to population
stratification, because our study population was 99% Cauca-
sian, and analyses limited to Caucasians did not change the
results. To address the issue of false positives arising from
multiple comparisons, we conducted permutation testing. On
the basis of 10,000 permutations, there is a very low probabil-
ity that our results are due to chance alone. The magnitude of
effects seen in this study is meaningful and suggests that
these variants may affect breast cancer risk. However, the
same IGF1, IGFBP1, and IGFBP3 genetic variants were
assessed with regard to breast cancer in the Multiethnic
Cohort (n= 1,615 breast cancer cases) and there was no evi-
dence that these common haplotypes were significantly asso-
ciated with breast cancer risk [62,38]. Additional studies are

Available online http://breast-cancer-research.com/content/9/1/R18

required to confirm our results with mammographic density
and the role of these variants in breast carcinogenesis.

Conclusion
Common genetic variation in IGF1 is strongly associated with
percentage mammographic density.
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