
Cleveland State University

From the SelectedWorks of Susan Slotnick

1996

Selecting Jobs for a Heavily Loaded Shop With
Lateness Penalties
Susan A. Slotnick, Cleveland State University
Thomas E Morton

Available at: https://works.bepress.com/susan-slotnick/15/

http://www.csuohio.edu/
https://works.bepress.com/susan-slotnick/
https://works.bepress.com/susan-slotnick/15/

Pergamon 0305-0548(95)00015-1

Computers Ops Res. Vol. 23, No. 2, pp. 131-140, 1996
Copyright © 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0305-0548/96 $9.50 + 0.00

S E L E C T I N G JOBS F O R A H E A V I L Y L O A D E D S H O P W I T H

L A T E N E S S P E N A L T I E S

Susan A. Slotnicklt and Thomas E. Morton2:~
lW. Averell Harriman School for Management and Policy, State University of New York at Stony Brook,

Stony Brook, NY 11794-3775 and 2Graduate School of Industrial Administration,
Carnegie Mellon University and Parsifal Systems, Pittsburgh, PA 15213, U.S.A.

(Received July 1992; in revised form March 1995)

Scope and Purpose--The purpose of this paper is to examine a set of trade-offs that can arise if a
manufacturing facility has more potential work than it can handle easily. That is, if there are more jobs
available to be processed than can be done without incurring time-related penalties such as lateness, how do
we decide which ones to accept? This situation is likely to arise when the market forces firms to compete on
the dimensions of service (i.e. on-time delivery) as well as price. In particular, an industry in which competition
forces prices to be fairly low relative to processing costs and lateness penalties would face trade-offs between
the revenue brought in by each job and the contribution of that job to lateness. In this paper, we formulate a
one-machine model for this scenario, devise an optimal solution method and two heuristic approaches, and
present computational results. We find that a fast, low-cost heuristic produces near-optimal results.

Abst rac t - -One way of adjusting the workload in a manufacturing facility when available jobs exceed
current capacity is to select a subset of jobs with the objective of maximizing total net profit for the firm, that
is, revenue contributed by jobs processed less a penalty for lateness. This motivates us to formulate the
objective function in terms of revenues minus costs, in order to reflect the trade-offs faced by the firm itself,
which views costs mainly in the context of the reduction of its profits. We present a model that uses weighted
lateness as a criterion for time-related penalties. Taking advantage of two special characteristics of the
problem, we develop an optimal algorithm and two heuristic procedures. Computational results show that
the myopic heuristic demonstrates near-optimal performance in a fraction of the processing time of the
optimal benchmark.

1. I N T R O D U C T I O N

There are various strategies for dealing with an overloaded manufacturing resource--be it a
bottleneck machine, work center, or the entire shop itself. Operations management textbooks list
methods like adding workers or overtime hours, subcontracting to another facility, or backlogging
demand to deal with a situation in which capacity limits are exceeded [1]. With regard to short-term
scheduling, an overloaded resource may be considered a "bottleneck", that is, a machine that runs
closer to capacity than any other machine in the shop. Since the advent of OPT [2, 3], it has become
generally accepted that "babying the bottleneck" is good scheduling practice. This may be
accomplished by developing heuristic prices for resources and using them to prioritize the jobs to
process [4, 5], by setting due dates to distribute the workload in a way that benefits both the firms
and its customers [6], or by selecting among the jobs available for processing those that would

tSusan A. Slotnick is Assistant Professor at the Averell W. Harriman School of Management and Policy at the State
University of New York at Stony Brook. The current research was done while she was a graduate student at the Graduate
School of Industrial Administration at Carnegie Mellon University, where she received her Ph.D. in Industrial
Administration in 1994. She also holds a Ph.D. in Linguistics from Columbia University. Her research interests include
heuristic and knowledge-based approaches to scheduling, and automated explanation of expert and quantitative advice-giving
systems.

:~Thomas E. Morton is Professor of Industrial Administration at the Graduate School of Industrial Administration at
Carnegie Mellon University and co-founder of Parsifal Systems. He received his Ph.D. from the University of Chicago.
His current research interests include bottleneck dynamics, dynamic implicit heuristic pricing of shop resources, pricing
systems for communication and control of man/machine planning and scheduling systems, and near-myopic approaches
to stochastic systems. He has written a book on heuristic scheduling systems.

131

132 Susan A. Slotnick and Thomas E. Morton

contribute the most to the profit of the firm. This last strategy is very similar to the problem of job
selection that we deal with in this study.

The idea is that various customers offer a number of jobs, and the firm decides which jobs from
that pool to accept for processing, based on profitability given the shop load. The trade-off that
must be considered is the revenue to be gained from jobs processed versus any penalties that result
from missing due dates. This motivates us to formulate the objective function in terms of revenues
minus costs, in order to reflect the trade-offs faced by the firm, which views costs mainly in the
context of the reduction of its profits.

The process of job selection may be illustrated by the example of a copier repair service. Let us say
that there is a weekly deadline for job orders (which creates a situation of static arrivals), with the
customers communicating their preferred dates for completion. From experience, the firm knows
how long it will take to repair each problem, and charges according to set rates based on labor and
parts. There is a discount to the customer for completing the job after the agreed-upon due-date; this
discount is proportional to the lateness of the job. In addition, the firm weights each job according
to the importance of the customer; this is a managerial decision that may take into account the
annual volume of work provided by a certain customer (historical or projected), the criticality of
certain jobs (as submitted by the customer), the potential loss of goodwill if differentiated among
customers (some are more sensitive to late delivery than others), and, most importantly, the dollar
value of the job. Finally, the firm attempts to decide which jobs to select for processing, by figuring
out how to maximize its profit while taking account of lateness penalties. It is clear that finishing a
job early will always be appreciated by the customer; this "earliness bonus" may in fact help the firm
itself, for instance, by providing more time for other jobs.

This example points up the major features of the model, as well as some possible complicating
factors. Because of the time-related penalties, the net profitability of any set of jobs depends on the
sequencing of jobs, the resulting completion times and consequent lateness. For this reason, a
scheduling model is proposed. In the simplest case, processing times, weights and per-job revenues
are given; arrivals are static; weighted lateness is the criterion for time-related penalties.

1.1. Related work

Very little has been written on the question of how to select jobs for processing. As Hendry and
Kingsman [7] point out, most of the work in production planning has dealt with problems that reflect
make-to-stock rather than make-to-order manufacturing environments. Glaser and Hottenstein [8]
consider a related question in a simulation study that examines the interactions between the firm's
estimated delivery time for jobs and the market 's decision to accept or refuse a bid, based on the
quoted delivery promise and the past performance of the firm. In that paper, it is the market rather
than the firm that makes the job acceptance decision.

Pourbabi [9] presents a model of job selection using net profit (job revenue minus operating costs)
as the objective. He posits an optimal model that takes into account processing and set-up costs as
well as tardiness penalties (number of tardy jobs), and allows the firm to decide to process batches of
varying sizes. This model also has a two-tier price structure. If a smaller batch size than has been
ordered is produced, and the order is subsequently rejected by the customer, the firm can sell the
finished material on the open market at a discounted price.

Pourbabi formulates the problem as a mixed binary linear programming model which generates
an optimal plan for loading an integrated manufacturing system with finite-capacity workstations,
maximizing net operating profit. He notes that improved computational performance can be
achieved by relaxing the integer constraint on the number of units produced, using static instead
of dynamic arrivals, using only one market price, and/or ignoring setup penalties and setup times;
no computational results are given.

In a sequel to this paper, Pourbabi [10] presents the job selection problem in the context of just-in-
time manufacturing. A mixed binary linear programming model is proposed to find optimal lot sizes
of split batches of jobs, while maximizing total net profit and ensuring that the production quantity
of each job equals its demand. Software packages that may be used to solve the model are discussed;
no computational results are given. Our model follows Pourbabi's lead in considering total net profit.
We use lateness penalties for our operational costs, and develop heuristics to give near-optimal
solutions. Our methods are based on the idea that the search space of the problem can be reduced by

Selecting jobs for a heavily loaded shop with lateness penalties 133

partitioning the jobs under consideration into two subsets: one that contains jobs guaranteed to be
included in the optimal solution, and one whose members must be considered for removal.

Woodruff [11] considers the problem of how much work to allocate to subcontractors, and the
related question of how to select which jobs to subcontract. Here the objective function maximizes
the value of all jobs that can be completed in-house; this includes jobs that are not allowed to be
subcontracted, and "opt ional" jobs, that is, jobs that may be either subcontracted or processed
in-house. Each job has an assigned priority value, from which is subtracted the following: holding
costs, setup costs, and aggregate costs including tooling, training and special materials. The last set
of costs are different for in-house processing and subcontracting. The problem is to find a set of jobs
and a sequence that will maximize this expression. Since this is NP-hard, Woodruff presents a
recursive algorithm that provides a lower bound on the value of work that must be subcontracted, and
heuristics (simulated annealing and tabu search) to find approximate solutions to the job-selection
and sequencing aspects of the problem.

The problem that we are solving is similar to Woodruff 's , in that we employ an objective function
that selects a subset of available jobs to be processed by trading offthe value of jobs with certain job-
related costs. However, we use lateness as our job-related cost; Woodruff employs hard deadlines,
and uses due-dates to calculate holding costs rather than time-related penalties. Thus he is modeling
a situation (such as a facility using JIT), in which ship dates are not allowed to slip, and subcontracting
is used in order to help meet these deadlines. In contrast, we are looking at a problem for which the
firm can deliver goods after the specified due-date at the price of losing some of its profit on that
transaction.

The relationship of job-selection strategies to production planning and scheduling in an
environment with set-up times and dynamic arrivals is the focus of a study by Wester et al. [12].
Their performance measure is utilization rate, defined here as the number of orders accepted and
processed, on the condition that they can be delivered on time. Using simulation, they test three
different heuristics. The "monoli thic" heuristic constructs a new schedule for all of the jobs waiting
for production whenever a new job arrives, and accepts the new job and new schedule if there is no
resulting lateness. The "hierarchic" heuristic compares the sum of the operation times of the jobs
which have already been accepted and the new job, and accepts the new job if this sum is less than a
critical work content level Wc. The "myopic" heuristic uses Wc in combination with a simple
priority rule to choose the next job to be processed. The problem investigated here differs from the
one that we consider in that no lateness is allowed, and also because per-job revenue as it contributes
to the profit of the firm is not considered.

1.2. Summary of the paper

Section 2 describes the model in detail. The simplest case is taken: one machine, static arrivals,
fixed processing times, due dates and profits. The objective function maximizes total net profit
(TNP), which is the sum of the revenues of all jobs minus weighted lateness penalties. Next, two
special properties of this problem are exploited. First, given a set of jobs, weighted shortest
processing time is known to be optimal in the minimization of weighted lateness. Second, we make
use of the existence of an easily calculated "removable" set of jobs which are the only ones that need
to be considered as possible candidates to be rejected when looking for the subset of the original
pool that yields the highest total net profit.

In Section 3, an optimal algorithm and two heuristics are proposed, based on these two special
properties. Section 4 presents the details of the computational study, and Section 5 presents our
conclusions.

2. T H E M O D E L

2.1. Description

Consider a one-machine model with static arrivals (all jobs available at time zero), and given
weights, processing times, due dates and revenues associated with each job. The objective is to
maximize total net profit, which is defined as revenue of each job minus weighted lateness. Lateness
(which may be negative) is completion time minus due date, all times the given weight. The objective

134 Susan A. Slotnick and Thomas E. Morton

function is thus

where

t /

max ~_,yi[Qi - wi(Ci - - d/)]
i=1

i = job index; i< j implies that job i precedes job j in the processing order (i.e.
WSPT order), i, j = 1 , . . . n

n = total number of jobs in the set
Yi ---= 0 or 1 (job accepted or not)
ai -- assigned revenue of job i
wi = weight (proportional lateness discount) of job i
Ci = completion time of job i; i.e. Ci -- E~=l pj, where pj is the processing time o f j o b j
di = due date of job i.

2.2. Special properties

It is a known result [13] that weighted shortest processing time (WSPT) order minimizes weighted
lateness. That is, if we ignore the selection issue, placing jobs in increasing order of the ratio of
processing time to weight will result in an optimal schedule. The algorithm and heuristics presented
here take advantage of this result.

A special property of this particular problem is that the initial set of candidate jobs may be
partitioned into two subsets: one containing jobs that are easily seen to be part of the optimal
solution, and the other containing jobs that may or may not be accepted into the optimal set. All
procedures in this paper exploit this property in order to reduce computation by limiting the number
of jobs that we consider removing, and so limiting the number of sets that we need to consider when
seeking the optimal solution.

The second subset, which we will call the removable set, is found in the following manner. First,
the initial set 5~ is sequenced in WSPT order. The total net profit of ,Y', TNP(Sf), is calculated. Next,
a single job i is removed from 5 a to create n subsets 6e i, each with n - 1 elements. Total net profit for
each, TNP(~i) , is calculated. If TNP(6~)< TNP(Sei), then job i is a member of the removable set;
otherwise it is guaranteed to be a member of the optimal set.

L e m m a 1. Let J - C_ 6 a, and J~i - {~-- - { i } } .
Define Ai(~-) = TNP(~i) - TNP(J -) , and Aim(J-) = Ai(~--m) : T N P (J i m) - TNP(9--m) (where

3-ira : ~--m -- { i }). Then Aim(~-) <. Ai(J-), implying that i f qZ C_ 6P then Ai(U) <. Ai(Aa).
Intuitively, the lemma states that removing job i from a larger subset will always result in a bigger
improvement in total net profit than removing it from a smaller subset.

Proof of lemma

For i > m:

For i <m:

Ai(°°°~) = - Q ' + Wi Z Pk + Pi Wk -- widi.
k=l k=i+ l

A i m (J) = -Qi + Wi

(1)

Pg Pi Wk -- widi. (2)
k = l , k C m k=i+l

A i m (J) = - Q i + wi Z Pk + Pi Wk -- widi
k= 1 k=i+ 1 ,kT~rn

[WiPm if i is after m in WSPT order
Ai(Y-) Aim(Y-) "ll piWm if i is before m in WSPT order.

Since wj i>0 andpj >t0 for all j , Aim(O~-)~Ai(T).

(3)

(4)

Selecting jobs for a heavily loaded shop with lateness penalties 135

This can easily be extended, one job at a time, to the case where the two subsets differ by more
than one job. •

Theorem 1. Given an initial set o f jobs S as described above, with subset 5Pi = {5 p - { i}}, / f TNP(5, °) ~>
TNP(SPi), then i is a member o f the optimal set with regard to profit maximization using weighted
lateness as time-related penalty

Proo f o f Theorem. We will assume that there exists a job i, not a member of the optimal set, such that
TNP(Sg)~>TNP(Sgi), and show that a contradiction results. Let ~/~ be the optimal set, and
sV = 5 ~ - Y/" be the members of 5 ¢ not in the optimal set. Now suppose there exists a job i E sV,
where sff = {i, nl, n2 , . . . , nk}. By assumption, TNP(5 p) >~TNP(5~i), which means that Ai(SP)~<0.
From the lemma, 0>~A/(SP)>~A~(SP), so TNP(SPi)~>TNP(SCinl). On the same lines, TNP(Ynl)~>
TNP(5~/,~) >/...TNP(SPin~...nk) = TNP(SP - sV) = T N P (C). This is a contradiction since TNP@¢ ~) is
the total net profit of the optimal set which is by definition the largest TNP of any subset. A formal
proof by induction is straightforward; it is omitted here. •

3. SOLUTION PROCEDURES

The algorithm and heuristics presented here take the above two properties into account. In each
case, the full initial set of jobs (~) is first arranged in WSPT order. Next, the removable set of jobs
(~) is found. Finally, the optimal solution is sought using a reduced combinatorial " top-down"
method: beginning with the initial set, subsets are created by deleting "removable" jobs; the subset
found with the highest total net profit is the solution. The procedures differ principally in the way in
which evaluation of subsets is limited.

3.1. Branch-and-bound algorithm with linear relaxation

In order to find an optimal solution to this problem, we use a branch-and-bound algorithm, in
which the bounding is provided by a linear relaxation of the current problem at each node. Profit
values of nodes in the decision tree are non-monotonic, since the value of each node (total net profit)
is calculated by subtracting any lateness penalties from the potential profit value of the set of jobs
being considered. If the problem is formulated as an integer program, and the integer requirement is
then relaxed, a linear programming solution can be found for each node. Since the child nodes all
contain fewer jobs than their parents, the values generated by the linear programs are monotonic,
i.e. they can only decrease toward leaf nodes. These values serve as upper bounds and enable
pruning of any branch whose linear-programming solution has a profit value that is lower than that
of the best solution found so far.

We reformulate the problem as a mixed integer linear program in the following manner. We write
the original objective function as

n

max ~ yi[Qi - wi(Ci - di)].
i = 1

The expression to be summed multiplies out to the following: y i Q i - y i w i C i +yiwidi • Since
Ci = E~=I PjYj, the second term of this expression is quadratic. Let xi = yiCi, that is, x~ is the
completion time if the job is accepted, and zero otherwise. Now the expression above may be
rewritten as yiQi - wixi Ac y i w i d i • The decision variables become xg and y~, and the second term is
now linear in these variables. The reformulated problem becomes

?1

m a x ~ Qiy i - wix i -k- diwiYi
i = 1

subject to

1. x i ~ m i y i (where Mi = E~.=l pjyj, the maximum possible completion time of job i).
2. x~ + M~O - y3>>.r~=lpjyj.

3. xi ~PiYi.
4. Yi = 0 or Yi = 1.
5. xi>/O , y i~O.

136 Susan A. Slotnick and Thomas E. Morton

The first constraint ensures that, if job i is accepted, its completion time will not exceed its
maximum possible value; if the job is not accepted, this constraint ensures that xi = 0. The second
constraint guarantees that the completion time of job i will be adjusted for any job before it that is
not accepted. For each job i, either constraint (1) or constraint (2) will be binding, depending on
whether the job has been accepted or not. Constraint (3) guarantees that Yi =- 0 if xi = 0, and also
that if the job is accepted, its completion time will be at least as large as its processing time. In
addition to enforcing feasibility, these three constraints keep the bounds tight when the integer
constraint on Yi is relaxed. The second formulation is equivalent to the first,t and generates the same
optimal results. To use this formulation, the program first sets Yi = 1 for each job that is known to
be in the optimal set (i.e. not in the removable set). Then the integer variable is relaxed.

For an illustration of how this bounding method works, see Fig. 1. The top node in the figure
represents the scheduling problem with the full set of available jobs; it has a total net profit (TNP) of
18, and an upper bound (UB, as calculated by the linear relaxation) of 32. This means that if all the
jobs were put in WSPT order, the resulting profit would be 18. I f the integer constraint were relaxed
(that is, jobs could be processed in arbitrarily small chunks), the profit would be 32. The next level of
nodes represents three new problems, each generated by removing a different job from the original
problem; each subsequent level is generated in the same manner. Now assume that we have
generated a trial solution o f T N P = 29, which is the best solution that we have so far. Any node with
an upper bound less than 29 can be pruned, since we know that its TNP, and that of its children, will
never be as good as the trial solution. As a result, we can prune nodes 5, 6 and 10.

Because calculating the linear relaxation is computationally expensive, we first prune the search
tree by using the following dominance property. By applying Theorem 1 to the subset of jobs at each
node, we see that, if the removal of a job results in a subset with profit lower than the profit of its
parent node, then the T N P of all child nodes can only be lower. As a result, that branch is fathomed
and we can remove it from further consideration. However, it is not true that this job is guaranteed
to be part of the optimal set; so a stronger version of this dominance property, which also removes
such a job from further consideration as part of the removable set across the entire tree, generates
sequences that are not guaranteed to be optimal. Looking again at Fig. 1, we can prune nodes 5 and
10 using this dominance property.

The branch-and-bound algorithm works as follows:

1. Find a trial solution using a good heuristic (we use the myopic heuristic described
below, which is very quick and usually gives the optimal solution or very close to it).

TNP=18 TNP=20 TNP=26 TNP=29 TNP=23 TNP=19
UB=26 UB=28 UB=30 UB=31 UB=30 UB=27

Fig. 1. Example of bounding by linear relaxation and dominance property.

tA proof will be supplied by the authors upon request.

Selecting jobs for a heavily loaded shop with lateness penalties 137

2. Put jobs in WSPT order. Find the removable set.
3. Work down through the tree, generating nodes by deleting successive " removable"

jobs.
4. Compare the net profit for the current node with the net profit of its parent node. I f

its net profit is lower than that of its parent, delete it. It has been fathomed.
5. I f the current node passes the above dominance test, compute its linear-programming

solution. I f the value of its net profit is lower than the trial solution, prune this branch.
6. Replace the trial solution with any better solution that is found in the course of

processing.
7. The procedure terminates when all branches have been fathomed.

The potential size of the generated tree is dependent upon how many jobs are removable. I f
calculation of duplicate subsets can be eliminated, computation is thus o(2r), where r is the cardinality
of the removable set. In order to avoid duplicate calculations, the branch-and-bound algorithm
incorporates an indexing routine that keeps track of which subsets have already been evaluated.t

3.2. Beam search heuristic

Because in our studies the branch-and-bound algorithm becomes unwieldy rather quickly, we
turned to a beam search formulation in order to provide a good benchmark for comparison with the
myopic heuristic for larger problems. Beam search is an approach that limits the generation of
the search tree to some predetermined number of "mos t promising" branches at each level. It was
developed by researchers in the field of artificial intelligence, and has been previously applied to
scheduling problems by Ow and Mor ton [15] and Chang, Matsuo and Sullivan [16].

The beam search heuristic for this problem works as follows:

1. Put jobs in WSPT order. Find the removable set.
2. Work down through the tree, generating nodes by deleting successive " removable"

jobs. For each node generated, evaluate its "promise" by calculating the solution
of the myopic heuristic on this subset of jobs. For each level of the tree, prune all
but the most promising b nodes.

3. Keep track of the best solution that is generated in the course of processing.
4. The procedure terminates when all branches have been fathomed.

Computa t ion for beam search is O(br4), where r is the size of the removable set and b is the
beamwidth (see Ow and Mor ton [15] for a discussion of the computat ional complexity of beam
search). Since we were using beam search as a substitute benchmark for the optimal algorithm, we
tested it against the branch-and-bound algorithm on a set of one hundred 17-job problems, with the
beam width set at 17. Beam search found the optimal solution in every case, at considerable savings
in processing time.

3.3. Myopic heuristic

The myopic heuristic pursues only the path that looks currently most promising. It generates a
much smaller tree, since it simply removes the last profitable job at each node until only a single job
can be removed to improve the total net profit. As soon as the total net profit of all subsets on one
level does not improve on the best of the previous level, the procedure terminates. Computa t ion is
O(r2); in fact, the largest number of nodes generated is [r + (r - 1) + (r - 2) + . . . + 1].

The details of this heuristic are as follows::l:

1. Put jobs in WSPT order.
2. Find the job with the highest 7r i = piY]y=i+lWj .-[- w i (C i - di) - Oi .
3. I f 7r i ~< 0, terminate.
4. Otherwise remove job i.
5. Return to step 2.

tBaker [14] presents a similar indexing convention in his FORTRAN code for a dynamic programming algorithm.
:~We would like to thank an anonymous referee for suggestions which led to this version of the myopic heuristic. The idea of

the removable set is implicit in this version of the heuristic.

138 Susan A. Slotnick and Thomas E. Morton

The myopic heuristic works exceptionally well for the type of problem we consider here, since the
combination of any one job 's contribution to average lateness and net profit is a good rough
indicator of whether or not it should be chosen for processing. Intuitively, jobs with relatively short
processing times and large contributions to total profit should be preferred to jobs that take a longer
time to complete and do not have as much payoff. In typical terms, in which processing times,
weights and due dates are relatively uniform, the " b a d " jobs can be determined at a fairly early stage
of the search tree.

4. COMPUTATIONAL STUDY

The myopic heuristic was tested on four hundred problems, one hundred each with 12, 17, 22 and
27jobs. For 12- and 17-job problems, the benchmark was the optimal branch-and-bound algorithm.
For the larger problems, solutions generated by the beam search heuristic provided the benchmark.

Test programs were coded in FORTRAN77 , and all tests were run on a DECstat ion 5000 under
the U N I X operating system. Weight, processing time, due date and revenue were randomly
generated. The first three were real numbers drawn uniformly from [0,10], and job revenue was a
randomly generated real number from a lognormal distribution with an underlying normal
distribution with mean 0 and standard deviation 1.t This reflects a situation in which job
characteristics are fairly similar, but where the potential revenue of any job may vary widely (see
Mor ton et al. [4]). For the beam search procedure, the beamwidth was equal to the number of jobs in
the set.

Tables 1 and 2 show aggregate results for these tests. Tests are displayed in ascending order of the
size of the problems. As shown in the columns comparing CPU times, the myopic heuristic was
always much faster than the benchmark methods. It was also extremely accurate, finding the
benchmark solution in all but 65 of the 400 examples generated. Over all four hundred problems,
the myopic solutions diverged on average 1.30% from the benchmark solution. The worst single
case diverged 51% from the benchmark solution.

From Tables 1 and 2, we see that, as we might expect, larger problems take both procedures
longer to process. Within each group of problems (consisting of 12, 17, 22 and 27jobs, respectively),
those with larger removable sets results in longer processing times; within problems with the same
size of removable set, those with smaller solution sets result in longer processing times. One way of
determining "difficulty" of these problems, then, is to look first at the size of the removable set
(bigger is harder), and then to look at the size of the solution set (smaller is harder). There is also a
rough correlation between these factors and the accuracy of the myopic heuristic.

In order to generate problems that were as difficult as possible, with respect to the sizes of the
removable set and solution set as described above, we used numbers for job revenue that are
relatively small. This reflects a very tight profit margin for the firm; it is representative of an industry
in which competit ion forces prices to be fairly low relative to processing costs and lateness penalties.
To test how our methods would work in a situation where per-job revenue was higher relative to
processing costs, we ran a study of fifty 20-job problems in which the revenue was generated to be
roughly five times the weight. These problems were much easier, in that the size of the removable
sets were much smaller than the size of the solution sets (the removable sets ranged from 1 to 9 jobs,
while the solution sets contained from 14 to 19 jobs). As expected, we found that the myopic
heuristic generated the optimal solution in every case, with considerable savings in computat ion
time. The average time for the branch-and-bound algorithm was 1,230.411 s of CPU time, while the
average for the myopic heuristic was 0.016 s; the slowest time for myopic heuristic was 0.031 s, and
for the branch-and-bound algorithm, 37,273.98 s; the fastest time for the myopic heuristic was
0.008 s, and for the branch-and-bound algorithm, 0.437 s.

tNote that these distributions guarantee that all numbers generated are positive. We used standard routines from the IMSL
libraries: RNUN for the uniform distribution, and RNLNL for the lognormal distribution. For the latter, the probability
density function is defined as:

1] f (x) = ~ exp - (lnx - #)2 for x>O

For more details, see [17],

Selecting jobs for a heavily loaded shop with lateness penalties

Table 1. Aggregate results for 400 experiments (12- and 17-job problems)

139

No. jobs
No. jobs in

removable set

No. jobs in
benchmark

solution

CPU time (s)

No. problems Bench. Myopic
Average %
deviation

12
12
12
12
12
12
12
12
12
12
12
12
12
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

12
12
12
12
12
11
11
11
11
11
10
10
9
17
17
17
17
17
16
16
16
16
16
15
15
15
15
14
14
14
13

1 2 9.11 0.01 0.00
2 24 7.92 0.01 2.63
3 17 7.04 0.01 0.55
4 4 6.06 0.01 1.59
5 1 4.82 0.01 0.00
2 9 4.23 0.01 0.23
3 11 4.05 0.01 0.00
4 13 4.24 0.01 0.03
5 3 4.90 0.01 1.49
6 2 7.45 0.01 0.00
4 8 1.80 0.01 0.00
5 3 2.13 0.01 0.00
6 3 1.28 0.01 0.00
1 1 689.33 0.04 0.00
2 7 700.68 0.04 12.38
3 23 575.61 0.03 0.91
4 16 563.19 0.03 0.22
5 13 452.16 0.03 0A5
2 2 355.83 0.04 0.63
3 3 318.69 0.03 12.20
4 15 279.76 0.04 2.13
5 6 251.97 0.03 0.00
6 4 204.77 0.03 0.00
3 1 149.17 0.04 5.26
4 2 151.05 0.03 2.24
5 2 144.56 0.03 0.00
6 1 76.66 0.02 0.00
5 1 58.63 0.02 6.09
6 1 70.55 0.02 0.00
7 1 81.41 0.02 0.00
6 1 25.99 0.02 0.00

Table 2. Aggregate results for 400 experiments (22- and 27-job problems)

No. jobs
No. jobs in

removable set

No. jobs in
benchmark

solution

CPU time (s)

No. problems Bench. Myopic
Average %
deviation

22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27

22
22
22
22
22
22
21
21
21
21
2O
2O
20
20
19
17
27
27
27
27
27
27
27
26
26
26
26
25
25
25
25
24
24

2 4 127.90 0.08 4.87
3 14 129.60 0.08 5.85
4 19 125.82 0.08 2.53
5 14 123.47 0.07 0.61
6 4 115.58 0.07 0.98
7 1 137.24 0.09 0.00
3 1 134.04 0.09 0.00
4 9 110.13 0.07 1.10
5 9 107.03 0.07 1.09
6 11 100.72 0.07 0.06
4 2 101.51 0.07 0.28
5 3 96.99 0.07 0.00
6 4 88,60 0.06 0.16
7 3 92.02 0.07 0.00
6 1 89.74 0.07 0.00
9 1 46.47 0.05 0.00
2 1 549.67 0.17 0.56
3 13 462.96 0.14 2.92
4 16 440.16 0.14 0.00
5 17 441.05 0.14 0.08
6 12 417.53 0.13 0.20
7 3 398.53 0.13 0.00
8 3 386.01 0.12 0.21
4 7 402.84 0.13 0.75
5 7 383.62 0.13 0.82
6 8 368.17 0.12 0.00
7 7 357.38 0.12 0.10
5 1 329.19 0.12 0.00
6 1 335.27 0.12 0.00
7 1 313.41 0.11 0.00
8 1 310.13 0.11 0.00
6 1 285.57 0.11 0.00
8 1 313.28 0.13 0.00

140 Susan A. Slotnick and Thomas E. Morton

5. C O N C L U S I O N S

This model of job selection in the context of heavy shop load presents a problem the structure of
which is ideal for the type of myopic heuristic that we tested here. Because we maximize total net
profit (total profit minus lateness costs) rather than minimizing lateness, optimal procedures like
branch-and-bound are computationally very expensive (due to the dimensionality of the search
space as well as the type of bounding method, such as linear programming, that must be used).
Although it is not optimal to remove a job from consideration once it has been shown that its
removal will improve net profit at some intermediate stage, this usually works for typical problems
in which the jobs have similar processing characteristics. Both the beam search and myopic heuristic
exploit this property, saving only the best results as they work their way through the search tree.
These heuristics run in a fraction of the time taken by the optimal algorithm, with results that are
optimal or very close to it most of the time. Possible extensions of this study include investigation of
how the concept of the removable set applies to other classes of objective functions, and how it
might be adapted to problems with different characteristics such as dynamic arrivals, set-up times or
precedence constraints.

Acknowledgements--We wish to thank Kenneth R. Baker, Sunder Kekre, Prasad Ramnath and an anonymous referee for
their helpful suggestions.

R E F E R E N C E S

1. J. R. Meredith, The Management of Operations." A Conceptual Emphasis. Wiley, New York (1992).
2. R. Lundrigan, What is this thing called OPT? Product. Invent. Mgmt 27, 2-11 (1986).
3. M. P. Meleton, OPT-fantasy or breakthrough? Product. Invent. Mgmt 27, 13 21 (1986).
4. T. E. Morton, S. R. Lawrence, S. Rajogopalan and S. Kekre, SCHED-STAR: A price-based shop scheduling module.

J. Manufact. Opns Mgmt 1, 131-181 (1988).
5. T.E. Morton and D. W. Pentico, Heuristic Scheduling Systems. With Applications to Production Engineering and Project

Management. Wiley, New York (1993).
6. T .C.E. Cheng and M. C. Gupta, Survey of scheduling research involving due date determination decisions. Eur. J. Opl

Res. 38, 156-166 (1989).
7. L. C. Hendry and B. G. Kingman, Production planning systems and their applicability to make-to-order companies.

Eur. J. OplRes. 40, 1 15 (1989).
8. R. Glaser and M. Hottenstein, Simulation study of a closed-loop job shop. J. Opns Mgmt 2, 155-166 (1982).
9. B. Pourbabi, A short term production planning and scheduling model. Engng Costs Product. Econ. 18, 159-167 (1989).

I0. B. Pourbabi, Optimalselection oforders in ajust-in-timemanufacturing environment: aloading model for a computer
integrated manufacturing system. Int. J. Comput. Integrated Manufact. 5, 38-44 (1992).

11. D. L. Woodruff, Subcontracting when there are setups, deadfine and tooling costs. In Proc. Intelligent Scheduling Systems
Symp. (Edited by Scherer W. T. and Brown D. E.), pp. 337-353 (1992).

12. F. A. W. Wester, J. Wijngaard and W. H. M. Zijm, Order acceptance strategies in a production-to-order environment
with setup times and due-dates. Int. J. Product. Res. 30, 1313-1326 (1992).

13. W. E. Smith, Various optimizers for single-stage production. Naval Res. Logist. Q. 3, 59-66 (1956).
14. K. R. Baker, Introduction to Sequencing and Scheduling. Wiley, New York (1974).
15. P. S. Ow and T. E. Morton, Filtered beam search in scheduling. Int. J. Product. Res. 26, 35-62 (1988).
16. Y-H. Chang, H. Matsuo and R. S. Sullivan, A bottleneck-based beam search for job scheduling in a flexible manufacturing

system. Int. J. Product. Res. 27, 1949-1961 (1989).
17, IMSL, User's Manual: FORTRAN Subroutines for Statistical Analysis, Chap. 18, Random number generation. IMSL

(1991).

	Cleveland State University
	From the SelectedWorks of Susan Slotnick
	1996

	Selecting Jobs for a Heavily Loaded Shop With Lateness Penalties
	PII: 0305-0548(95)00015-E

