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Scope and Purpose--The purpose of  this paper is to examine a set of  trade-offs that can arise if a 
manufacturing facility has more potential work than it can handle easily. That is, if there are more jobs 
available to be processed than can be done without incurring time-related penalties such as lateness, how do 
we decide which ones to accept? This situation is likely to arise when the market forces firms to compete on 
the dimensions of  service (i.e. on-time delivery) as well as price. In particular, an industry in which competition 
forces prices to be fairly low relative to processing costs and lateness penalties would face trade-offs between 
the revenue brought in by each job and the contribution of  that job to lateness. In this paper, we formulate a 
one-machine model for this scenario, devise an optimal solution method and two heuristic approaches, and 
present computational results. We find that a fast, low-cost heuristic produces near-optimal results. 

Abst rac t - -One way of  adjusting the workload in a manufacturing facility when available jobs exceed 
current capacity is to select a subset of jobs with the objective of  maximizing total net profit for the firm, that 
is, revenue contributed by jobs processed less a penalty for lateness. This motivates us to formulate the 
objective function in terms of  revenues minus costs, in order to reflect the trade-offs faced by the firm itself, 
which views costs mainly in the context of  the reduction of  its profits. We present a model that uses weighted 
lateness as a criterion for time-related penalties. Taking advantage of  two special characteristics of  the 
problem, we develop an optimal algorithm and two heuristic procedures. Computational results show that 
the myopic heuristic demonstrates near-optimal performance in a fraction of  the processing time of the 
optimal benchmark. 

1. I N T R O D U C T I O N  

There are various strategies for dealing with an overloaded manufacturing resource--be it a 
bottleneck machine, work center, or the entire shop itself. Operations management textbooks list 
methods like adding workers or overtime hours, subcontracting to another facility, or backlogging 
demand to deal with a situation in which capacity limits are exceeded [1]. With regard to short-term 
scheduling, an overloaded resource may be considered a "bottleneck", that is, a machine that runs 
closer to capacity than any other machine in the shop. Since the advent of OPT [2, 3], it has become 
generally accepted that "babying the bottleneck" is good scheduling practice. This may be 
accomplished by developing heuristic prices for resources and using them to prioritize the jobs to 
process [4, 5], by setting due dates to distribute the workload in a way that benefits both the firms 
and its customers [6], or by selecting among the jobs available for processing those that would 
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contribute the most to the profit of  the firm. This last strategy is very similar to the problem of job 
selection that we deal with in this study. 

The idea is that various customers offer a number of jobs, and the firm decides which jobs from 
that pool to accept for processing, based on profitability given the shop load. The trade-off that 
must be considered is the revenue to be gained from jobs processed versus any penalties that result 
from missing due dates. This motivates us to formulate the objective function in terms of revenues 
minus costs, in order to reflect the trade-offs faced by the firm, which views costs mainly in the 
context of the reduction of  its profits. 

The process of job selection may be illustrated by the example of a copier repair service. Let us say 
that there is a weekly deadline for job orders (which creates a situation of static arrivals), with the 
customers communicating their preferred dates for completion. From experience, the firm knows 
how long it will take to repair each problem, and charges according to set rates based on labor and 
parts. There is a discount to the customer for completing the job after the agreed-upon due-date; this 
discount is proportional to the lateness of the job. In addition, the firm weights each job according 
to the importance of the customer; this is a managerial decision that may take into account the 
annual volume of work provided by a certain customer (historical or projected), the criticality of 
certain jobs (as submitted by the customer), the potential loss of goodwill if differentiated among 
customers (some are more sensitive to late delivery than others), and, most importantly, the dollar 
value of  the job. Finally, the firm attempts to decide which jobs to select for processing, by figuring 
out how to maximize its profit while taking account of  lateness penalties. It is clear that finishing a 
job early will always be appreciated by the customer; this "earliness bonus" may in fact help the firm 
itself, for instance, by providing more time for other jobs. 

This example points up the major features of  the model, as well as some possible complicating 
factors. Because of  the time-related penalties, the net profitability of any set of  jobs depends on the 
sequencing of  jobs, the resulting completion times and consequent lateness. For  this reason, a 
scheduling model is proposed. In the simplest case, processing times, weights and per-job revenues 
are given; arrivals are static; weighted lateness is the criterion for time-related penalties. 

1.1. Related work 

Very little has been written on the question of how to select jobs for processing. As Hendry and 
Kingsman [7] point out, most of the work in production planning has dealt with problems that reflect 
make-to-stock rather than make-to-order manufacturing environments. Glaser and Hottenstein [8] 
consider a related question in a simulation study that examines the interactions between the firm's 
estimated delivery time for jobs and the market 's decision to accept or refuse a bid, based on the 
quoted delivery promise and the past performance of the firm. In that paper, it is the market rather 
than the firm that makes the job acceptance decision. 

Pourbabi [9] presents a model of  job selection using net profit (job revenue minus operating costs) 
as the objective. He posits an optimal model that takes into account processing and set-up costs as 
well as tardiness penalties (number of tardy jobs), and allows the firm to decide to process batches of  
varying sizes. This model also has a two-tier price structure. If a smaller batch size than has been 
ordered is produced, and the order is subsequently rejected by the customer, the firm can sell the 
finished material on the open market at a discounted price. 

Pourbabi formulates the problem as a mixed binary linear programming model which generates 
an optimal plan for loading an integrated manufacturing system with finite-capacity workstations, 
maximizing net operating profit. He notes that improved computational performance can be 
achieved by relaxing the integer constraint on the number of units produced, using static instead 
of  dynamic arrivals, using only one market price, and/or ignoring setup penalties and setup times; 
no computational results are given. 

In a sequel to this paper, Pourbabi [10] presents the job selection problem in the context of just-in- 
time manufacturing. A mixed binary linear programming model is proposed to find optimal lot sizes 
of  split batches of jobs, while maximizing total net profit and ensuring that the production quantity 
of  each job equals its demand. Software packages that may be used to solve the model are discussed; 
no computational results are given. Our model follows Pourbabi's lead in considering total net profit. 
We use lateness penalties for our operational costs, and develop heuristics to give near-optimal 
solutions. Our methods are based on the idea that the search space of the problem can be reduced by 



Selecting jobs for a heavily loaded shop with lateness penalties 133 

partitioning the jobs under consideration into two subsets: one that contains jobs guaranteed to be 
included in the optimal solution, and one whose members must be considered for removal. 

Woodruff  [11] considers the problem of  how much work to allocate to subcontractors, and the 
related question of how to select which jobs to subcontract. Here the objective function maximizes 
the value of  all jobs that can be completed in-house; this includes jobs that are not allowed to be 
subcontracted, and "opt ional"  jobs, that is, jobs that may be either subcontracted or processed 
in-house. Each job has an assigned priority value, from which is subtracted the following: holding 
costs, setup costs, and aggregate costs including tooling, training and special materials. The last set 
of  costs are different for in-house processing and subcontracting. The problem is to find a set of  jobs 
and a sequence that will maximize this expression. Since this is NP-hard, Woodruff  presents a 
recursive algorithm that provides a lower bound on the value of work that must be subcontracted, and 
heuristics (simulated annealing and tabu search) to find approximate solutions to the job-selection 
and sequencing aspects of  the problem. 

The problem that we are solving is similar to Woodruff 's ,  in that we employ an objective function 
that selects a subset of  available jobs to be processed by trading offthe value of jobs with certain job- 
related costs. However, we use lateness as our job-related cost; Woodruff  employs hard deadlines, 
and uses due-dates to calculate holding costs rather than time-related penalties. Thus he is modeling 
a situation (such as a facility using JIT), in which ship dates are not allowed to slip, and subcontracting 
is used in order to help meet these deadlines. In contrast, we are looking at a problem for which the 
firm can deliver goods after the specified due-date at the price of losing some of  its profit on that 
transaction. 

The relationship of job-selection strategies to production planning and scheduling in an 
environment with set-up times and dynamic arrivals is the focus of a study by Wester et al. [12]. 
Their performance measure is utilization rate, defined here as the number of  orders accepted and 
processed, on the condition that they can be delivered on time. Using simulation, they test three 
different heuristics. The "monoli thic" heuristic constructs a new schedule for all of  the jobs waiting 
for production whenever a new job arrives, and accepts the new job and new schedule if there is no 
resulting lateness. The "hierarchic" heuristic compares the sum of the operation times of  the jobs 
which have already been accepted and the new job, and accepts the new job if this sum is less than a 
critical work content level Wc. The "myopic"  heuristic uses Wc in combination with a simple 
priority rule to choose the next job to be processed. The problem investigated here differs from the 
one that we consider in that no lateness is allowed, and also because per-job revenue as it contributes 
to the profit of  the firm is not considered. 

1.2. Summary of  the paper 

Section 2 describes the model in detail. The simplest case is taken: one machine, static arrivals, 
fixed processing times, due dates and profits. The objective function maximizes total net profit 
(TNP), which is the sum of  the revenues of  all jobs minus weighted lateness penalties. Next, two 
special properties of  this problem are exploited. First, given a set of jobs, weighted shortest 
processing time is known to be optimal in the minimization of weighted lateness. Second, we make 
use of the existence of  an easily calculated "removable" set of jobs which are the only ones that need 
to be considered as possible candidates to be rejected when looking for the subset of  the original 
pool that yields the highest total net profit. 

In Section 3, an optimal algorithm and two heuristics are proposed, based on these two special 
properties. Section 4 presents the details of the computational study, and Section 5 presents our 
conclusions. 

2. T H E  M O D E L  

2.1. Description 

Consider a one-machine model with static arrivals (all jobs available at time zero), and given 
weights, processing times, due dates and revenues associated with each job. The objective is to 
maximize total net profit, which is defined as revenue of  each job minus weighted lateness. Lateness 
(which may be negative) is completion time minus due date, all times the given weight. The objective 
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function is thus 

where 

t /  

max ~_,yi[Qi - wi( Ci - -  d/)] 
i=1 

i = job index; i<  j implies that job i precedes job j in the processing order (i.e. 
WSPT order), i, j = 1 , . . .  n 

n = total number of jobs in the set 
Yi ---= 0 or 1 (job accepted or not) 
ai -- assigned revenue of job i 
wi = weight (proportional lateness discount) of  job i 
Ci = completion time of  job i; i.e. Ci -- E~=l pj, where pj is the processing time o f j o b j  
di = due date of  job i. 

2.2. Special properties 

It is a known result [ 13] that weighted shortest processing time (WSPT) order minimizes weighted 
lateness. That  is, if we ignore the selection issue, placing jobs in increasing order of the ratio of  
processing time to weight will result in an optimal schedule. The algorithm and heuristics presented 
here take advantage of  this result. 

A special property of  this particular problem is that the initial set of candidate jobs may be 
partitioned into two subsets: one containing jobs that are easily seen to be part of the optimal 
solution, and the other containing jobs that may or may not be accepted into the optimal set. All 
procedures in this paper exploit this property in order to reduce computation by limiting the number 
of  jobs that we consider removing, and so limiting the number of sets that we need to consider when 
seeking the optimal solution. 

The second subset, which we will call the removable set, is found in the following manner. First, 
the initial set 5~ is sequenced in WSPT order. The total net profit of  ,Y', TNP(Sf),  is calculated. Next, 
a single job i is removed from 5 a to create n subsets 6e i, each with n - 1 elements. Total net profit for 
each, TNP(~i) ,  is calculated. If  TNP(6~)< TNP(Sei), then job i is a member of  the removable set; 
otherwise it is guaranteed to be a member of  the optimal set. 

L e m m a  1. Let  J -  C_ 6 a, and J~i - {~-- - { i } } .  
Define Ai(~-) = TNP(~i)  - TNP(J - ) ,  and Aim(J-) = Ai(~--m) : T N P ( J i m )  - TNP(9--m) (where 

3-ira : ~--m -- { i } ). Then Aim( ~-) <. Ai( J-),  implying that i f  qZ C_ 6P then Ai( U) <. Ai( Aa ). 
Intuitively, the lemma states that removing job i from a larger subset will always result in a bigger 
improvement in total net profit than removing it from a smaller subset. 

Proof of  lemma 

For i > m: 

For  i <m: 

Ai(°°°~ ) = - Q '  + Wi Z Pk + Pi Wk -- widi. 
k=l  k=i+ l  

A i m ( J )  = -Qi  + Wi 

(1) 

Pg Pi Wk -- widi. (2) 
k = l , k C m  k=i+l  

A i m ( J )  = - Q i  + wi Z Pk + Pi Wk -- widi 
k= 1 k=i+  1 ,kT~rn 

[ WiPm if i is after m in WSPT order 
Ai(Y- ) Aim(Y-) "ll piWm if i is before m in WSPT order. 

Since wj i>0 andpj  >t0 for all j ,  Aim(O~-)~Ai(T ). 

(3) 

(4) 
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This can easily be extended, one job at a time, to the case where the two subsets differ by more 
than one job. • 

Theorem 1. Given an initial set o f  jobs S as described above, with subset 5Pi = {5 p - { i}}, / f  TNP(5, °) ~> 
TNP(SPi), then i is a member  o f  the optimal set with regard to profit maximization using weighted 
lateness as time-related penalty 

Proo f  o f  Theorem. We will assume that there exists a job i, not a member of  the optimal set, such that 
TNP(Sg)~>TNP(Sgi), and show that a contradiction results. Let ~/~ be the optimal set, and 
sV = 5 ~ - Y/" be the members of 5 ¢ not in the optimal set. Now suppose there exists a job i E sV, 
where sff = {i, nl, n2 , . . . ,  nk}. By assumption, TNP(5 p) >~TNP(5~i), which means that Ai(SP)~<0. 
From the lemma, 0>~A/(SP)>~A~(SP), so TNP(SPi)~>TNP(SCinl). On the same lines, TNP(Ynl)~> 
TNP(5~/,~ ) >/...TNP(SPin~...nk) = TNP(SP - sV) = T N P ( C  ). This is a contradiction since TNP@¢ ~) is 
the total net profit of  the optimal set which is by definition the largest TNP of any subset. A formal 
proof  by induction is straightforward; it is omitted here. • 

3. SOLUTION PROCEDURES 

The algorithm and heuristics presented here take the above two properties into account. In each 
case, the full initial set of  jobs ( ~ )  is first arranged in WSPT order. Next, the removable set of  jobs 
(~)  is found. Finally, the optimal solution is sought using a reduced combinatorial " top-down" 
method: beginning with the initial set, subsets are created by deleting "removable" jobs; the subset 
found with the highest total net profit is the solution. The procedures differ principally in the way in 
which evaluation of  subsets is limited. 

3.1. Branch-and-bound algorithm with linear relaxation 

In order to find an optimal solution to this problem, we use a branch-and-bound algorithm, in 
which the bounding is provided by a linear relaxation of the current problem at each node. Profit 
values of  nodes in the decision tree are non-monotonic, since the value of  each node (total net profit) 
is calculated by subtracting any lateness penalties from the potential profit value of  the set of  jobs 
being considered. If the problem is formulated as an integer program, and the integer requirement is 
then relaxed, a linear programming solution can be found for each node. Since the child nodes all 
contain fewer jobs than their parents, the values generated by the linear programs are monotonic, 
i.e. they can only decrease toward leaf nodes. These values serve as upper bounds and enable 
pruning of  any branch whose linear-programming solution has a profit value that is lower than that 
of  the best solution found so far. 

We reformulate the problem as a mixed integer linear program in the following manner. We write 
the original objective function as 

n 

max ~ yi[Qi - wi( Ci - di)]. 
i = 1  

The expression to be summed multiplies out to the following: y i Q i - y i w i C i  +yiwidi  • Since 
Ci = E~=I PjYj, the second term of this expression is quadratic. Let xi = yiCi, that is, x~ is the 
completion time if the job is accepted, and zero otherwise. Now the expression above may be 
rewritten as yiQi - wixi Ac y i w i d i  • The decision variables become xg and y~, and the second term is 
now linear in these variables. The reformulated problem becomes 

?1 

m a x  ~ Qiy i  - wix i  -k- diwiYi  
i = 1  

subject to 

1. x i ~ m i y  i (where Mi = E~.=l pjyj, the maximum possible completion time of job i). 
2. x~ + M~O - y3>>.r~=lpjyj. 

3. xi ~PiYi. 
4. Yi = 0 or Yi = 1. 
5. xi>/O , y i~O.  
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The first constraint ensures that, if job i is accepted, its completion time will not exceed its 
maximum possible value; if the job is not accepted, this constraint ensures that xi = 0. The second 
constraint guarantees that the completion time of  job i will be adjusted for any job before it that is 
not accepted. For  each job i, either constraint (1) or constraint (2) will be binding, depending on 
whether the job has been accepted or not. Constraint (3) guarantees that Yi =- 0 if xi = 0, and also 
that if the job is accepted, its completion time will be at least as large as its processing time. In 
addition to enforcing feasibility, these three constraints keep the bounds tight when the integer 
constraint on Yi is relaxed. The second formulation is equivalent to the first,t and generates the same 
optimal results. To use this formulation, the program first sets Yi = 1 for each job that is known to 
be in the optimal set (i.e. not in the removable set). Then the integer variable is relaxed. 

For  an illustration of  how this bounding method works, see Fig. 1. The top node in the figure 
represents the scheduling problem with the full set of available jobs; it has a total net profit (TNP) of 
18, and an upper bound (UB, as calculated by the linear relaxation) of 32. This means that if all the 
jobs were put in WSPT order, the resulting profit would be 18. I f  the integer constraint were relaxed 
(that is, jobs could be processed in arbitrarily small chunks), the profit would be 32. The next level of  
nodes represents three new problems, each generated by removing a different job from the original 
problem; each subsequent level is generated in the same manner. Now assume that we have 
generated a trial solution o f T N P  = 29, which is the best solution that we have so far. Any node with 
an upper bound less than 29 can be pruned, since we know that its TNP,  and that of  its children, will 
never be as good as the trial solution. As a result, we can prune nodes 5, 6 and 10. 

Because calculating the linear relaxation is computationally expensive, we first prune the search 
tree by using the following dominance property. By applying Theorem 1 to the subset of  jobs at each 
node, we see that, if the removal of  a job results in a subset with profit lower than the profit of  its 
parent node, then the T N P  of  all child nodes can only be lower. As a result, that branch is fathomed 
and we can remove it from further consideration. However, it is not true that this job is guaranteed 
to be part  of  the optimal set; so a stronger version of this dominance property, which also removes 
such a job from further consideration as part  of  the removable set across the entire tree, generates 
sequences that are not guaranteed to be optimal. Looking again at Fig. 1, we can prune nodes 5 and 
10 using this dominance property. 

The branch-and-bound algorithm works as follows: 

1. Find a trial solution using a good heuristic (we use the myopic heuristic described 
below, which is very quick and usually gives the optimal solution or very close to it). 

TNP=18 TNP=20 TNP=26 TNP=29 TNP=23 TNP=19 
UB=26 UB=28 UB=30 UB=31 UB=30 UB=27 

Fig. 1. Example of bounding by linear relaxation and dominance property. 

tA proof will be supplied by the authors upon request. 
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2. Put jobs in WSPT order. Find the removable set. 
3. Work  down through the tree, generating nodes by deleting successive " removable"  

jobs. 
4. Compare  the net profit for the current node with the net profit of  its parent node. I f  

its net profit is lower than that of  its parent, delete it. It has been fathomed. 
5. I f  the current node passes the above dominance test, compute its linear-programming 

solution. I f  the value of its net profit is lower than the trial solution, prune this branch. 
6. Replace the trial solution with any better solution that is found in the course of  

processing. 
7. The procedure terminates when all branches have been fathomed. 

The potential size of  the generated tree is dependent upon how many jobs are removable. I f  
calculation of duplicate subsets can be eliminated, computation is thus o(2r), where r is the cardinality 
of  the removable set. In order to avoid duplicate calculations, the branch-and-bound algorithm 
incorporates an indexing routine that keeps track of  which subsets have already been evaluated.t  

3.2. Beam search heuristic 

Because in our studies the branch-and-bound algorithm becomes unwieldy rather quickly, we 
turned to a beam search formulation in order to provide a good benchmark for comparison with the 
myopic heuristic for larger problems. Beam search is an approach that limits the generation of  
the search tree to some predetermined number  of  "mos t  promising" branches at each level. It  was 
developed by researchers in the field of  artificial intelligence, and has been previously applied to 
scheduling problems by Ow and Mor ton  [15] and Chang, Matsuo and Sullivan [16]. 

The beam search heuristic for this problem works as follows: 

1. Put jobs in WSPT order. Find the removable set. 
2. Work  down through the tree, generating nodes by deleting successive " removable"  

jobs. For  each node generated, evaluate its "promise"  by calculating the solution 
of the myopic heuristic on this subset of  jobs. For  each level of  the tree, prune all 
but the most  promising b nodes. 

3. Keep track of  the best solution that is generated in the course of  processing. 
4. The procedure terminates when all branches have been fathomed. 

Computa t ion  for beam search is O(br4), where r is the size of  the removable set and b is the 
beamwidth (see Ow and Mor ton  [15] for a discussion of  the computat ional  complexity of  beam 
search). Since we were using beam search as a substitute benchmark for the optimal algorithm, we 
tested it against the branch-and-bound algorithm on a set of  one hundred 17-job problems, with the 
beam width set at 17. Beam search found the optimal solution in every case, at considerable savings 
in processing time. 

3.3. Myopic heuristic 

The myopic heuristic pursues only the path that looks currently most  promising. It  generates a 
much smaller tree, since it simply removes the last profitable job at each node until only a single job 
can be removed to improve the total net profit. As soon as the total net profit of  all subsets on one 
level does not improve on the best of  the previous level, the procedure terminates. Computa t ion  is 
O(r2); in fact, the largest number  of  nodes generated is [r + (r - 1) + (r - 2) + . . .  + 1]. 

The details of  this heuristic are as follows::l: 

1. Put jobs in WSPT order. 
2. Find the job with the highest 7r i = piY]y=i+lWj .-[- w i ( C  i - di)  - Oi .  
3. I f  7r i ~< 0, terminate. 
4. Otherwise remove job i. 
5. Return to step 2. 

tBaker [14] presents a similar indexing convention in his FORTRAN code for a dynamic programming algorithm. 
:~We would like to thank an anonymous referee for suggestions which led to this version of the myopic heuristic. The idea of 

the removable set is implicit in this version of the heuristic. 
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The myopic heuristic works exceptionally well for the type of  problem we consider here, since the 
combination of  any one job 's  contribution to average lateness and net profit is a good rough 
indicator of  whether or not it should be chosen for processing. Intuitively, jobs with relatively short 
processing times and large contributions to total profit should be preferred to jobs that take a longer 
time to complete and do not have as much payoff. In typical terms, in which processing times, 
weights and due dates are relatively uniform, the " b a d "  jobs can be determined at a fairly early stage 
of  the search tree. 

4. COMPUTATIONAL STUDY 

The myopic heuristic was tested on four hundred problems, one hundred each with 12, 17, 22 and 
27jobs. For  12- and 17-job problems, the benchmark was the optimal branch-and-bound algorithm. 
For  the larger problems, solutions generated by the beam search heuristic provided the benchmark. 

Test programs were coded in FORTRAN77 ,  and all tests were run on a DECstat ion 5000 under 
the U N I X  operating system. Weight, processing time, due date and revenue were randomly 
generated. The first three were real numbers drawn uniformly from [0,10], and job revenue was a 
randomly generated real number  from a lognormal distribution with an underlying normal 
distribution with mean 0 and standard deviation 1.t This reflects a situation in which job 
characteristics are fairly similar, but where the potential revenue of  any job may vary widely (see 
Mor ton  et al. [4]). For  the beam search procedure, the beamwidth was equal to the number  of  jobs in 
the set. 

Tables 1 and 2 show aggregate results for these tests. Tests are displayed in ascending order of  the 
size of  the problems. As shown in the columns comparing CPU times, the myopic heuristic was 
always much faster than the benchmark methods. It was also extremely accurate, finding the 
benchmark solution in all but 65 of  the 400 examples generated. Over all four hundred problems, 
the myopic solutions diverged on average 1.30% from the benchmark solution. The worst single 
case diverged 51% from the benchmark solution. 

From Tables 1 and 2, we see that, as we might expect, larger problems take both procedures 
longer to process. Within each group of  problems (consisting of 12, 17, 22 and 27jobs, respectively), 
those with larger removable sets results in longer processing times; within problems with the same 
size of  removable set, those with smaller solution sets result in longer processing times. One way of  
determining "difficulty" of  these problems, then, is to look first at the size of  the removable set 
(bigger is harder), and then to look at the size of  the solution set (smaller is harder). There is also a 
rough correlation between these factors and the accuracy of the myopic heuristic. 

In order to generate problems that were as difficult as possible, with respect to the sizes of  the 
removable set and solution set as described above, we used numbers for job revenue that are 
relatively small. This reflects a very tight profit margin for the firm; it is representative of  an industry 
in which competit ion forces prices to be fairly low relative to processing costs and lateness penalties. 
To test how our methods would work in a situation where per-job revenue was higher relative to 
processing costs, we ran a study of fifty 20-job problems in which the revenue was generated to be 
roughly five times the weight. These problems were much easier, in that the size of  the removable 
sets were much smaller than the size of  the solution sets (the removable sets ranged from 1 to 9 jobs, 
while the solution sets contained from 14 to 19 jobs). As expected, we found that the myopic 
heuristic generated the optimal solution in every case, with considerable savings in computat ion 
time. The average time for the branch-and-bound algorithm was 1,230.411 s of  CPU time, while the 
average for the myopic heuristic was 0.016 s; the slowest time for myopic heuristic was 0.031 s, and 
for the branch-and-bound algorithm, 37,273.98 s; the fastest time for the myopic heuristic was 
0.008 s, and for the branch-and-bound algorithm, 0.437 s. 

tNote that these distributions guarantee that all numbers generated are positive. We used standard routines from the IMSL 
libraries: RNUN for the uniform distribution, and RNLNL for the lognormal distribution. For the latter, the probability 
density function is defined as: 

1 ] f (x)  = ~ exp - (lnx - #)2 for x>O 

For more details, see [17], 
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No. jobs 
No. jobs in 

removable set 

No. jobs in 
benchmark 

solution 

CPU time (s) 

No. problems Bench. Myopic 
Average % 
deviation 

12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 

12 
12 
12 
12 
12 
11 
11 
11 
11 
11 
10 
10 
9 
17 
17 
17 
17 
17 
16 
16 
16 
16 
16 
15 
15 
15 
15 
14 
14 
14 
13 

1 2 9.11 0.01 0.00 
2 24 7.92 0.01 2.63 
3 17 7.04 0.01 0.55 
4 4 6.06 0.01 1.59 
5 1 4.82 0.01 0.00 
2 9 4.23 0.01 0.23 
3 11 4.05 0.01 0.00 
4 13 4.24 0.01 0.03 
5 3 4.90 0.01 1.49 
6 2 7.45 0.01 0.00 
4 8 1.80 0.01 0.00 
5 3 2.13 0.01 0.00 
6 3 1.28 0.01 0.00 
1 1 689.33 0.04 0.00 
2 7 700.68 0.04 12.38 
3 23 575.61 0.03 0.91 
4 16 563.19 0.03 0.22 
5 13 452.16 0.03 0A5 
2 2 355.83 0.04 0.63 
3 3 318.69 0.03 12.20 
4 15 279.76 0.04 2.13 
5 6 251.97 0.03 0.00 
6 4 204.77 0.03 0.00 
3 1 149.17 0.04 5.26 
4 2 151.05 0.03 2.24 
5 2 144.56 0.03 0.00 
6 1 76.66 0.02 0.00 
5 1 58.63 0.02 6.09 
6 1 70.55 0.02 0.00 
7 1 81.41 0.02 0.00 
6 1 25.99 0.02 0.00 

Table 2. Aggregate results for 400 experiments (22- and 27-job problems) 

No. jobs 
No. jobs in 

removable set 

No. jobs in 
benchmark 

solution 

CPU time (s) 

No. problems Bench. Myopic 
Average % 
deviation 

22 
22 
22 
22 
22 
22 
22 
22 
22 
22 
22 
22 
22 
22 
22 
22 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 
27 

22 
22 
22 
22 
22 
22 
21 
21 
21 
21 
2O 
2O 
20 
20 
19 
17 
27 
27 
27 
27 
27 
27 
27 
26 
26 
26 
26 
25 
25 
25 
25 
24 
24 

2 4 127.90 0.08 4.87 
3 14 129.60 0.08 5.85 
4 19 125.82 0.08 2.53 
5 14 123.47 0.07 0.61 
6 4 115.58 0.07 0.98 
7 1 137.24 0.09 0.00 
3 1 134.04 0.09 0.00 
4 9 110.13 0.07 1.10 
5 9 107.03 0.07 1.09 
6 11 100.72 0.07 0.06 
4 2 101.51 0.07 0.28 
5 3 96.99 0.07 0.00 
6 4 88,60 0.06 0.16 
7 3 92.02 0.07 0.00 
6 1 89.74 0.07 0.00 
9 1 46.47 0.05 0.00 
2 1 549.67 0.17 0.56 
3 13 462.96 0.14 2.92 
4 16 440.16 0.14 0.00 
5 17 441.05 0.14 0.08 
6 12 417.53 0.13 0.20 
7 3 398.53 0.13 0.00 
8 3 386.01 0.12 0.21 
4 7 402.84 0.13 0.75 
5 7 383.62 0.13 0.82 
6 8 368.17 0.12 0.00 
7 7 357.38 0.12 0.10 
5 1 329.19 0.12 0.00 
6 1 335.27 0.12 0.00 
7 1 313.41 0.11 0.00 
8 1 310.13 0.11 0.00 
6 1 285.57 0.11 0.00 
8 1 313.28 0.13 0.00 
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5. C O N C L U S I O N S  

This model of  job selection in the context of heavy shop load presents a problem the structure of 
which is ideal for the type of myopic heuristic that we tested here. Because we maximize total net 
profit (total profit minus lateness costs) rather than minimizing lateness, optimal procedures like 
branch-and-bound are computationally very expensive (due to the dimensionality of the search 
space as well as the type of  bounding method, such as linear programming, that must be used). 
Although it is not optimal to remove a job from consideration once it has been shown that its 
removal will improve net profit at some intermediate stage, this usually works for typical problems 
in which the jobs have similar processing characteristics. Both the beam search and myopic heuristic 
exploit this property, saving only the best results as they work their way through the search tree. 
These heuristics run in a fraction of the time taken by the optimal algorithm, with results that are 
optimal or very close to it most of the time. Possible extensions of this study include investigation of 
how the concept of the removable set applies to other classes of objective functions, and how it 
might be adapted to problems with different characteristics such as dynamic arrivals, set-up times or 
precedence constraints. 
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