
Cleveland State University

From the SelectedWorks of Susan Slotnick

2002

Multi-Period Job Selection: Planning Work Loads
to Maximize Profit
Herbert F. Lewis
Susan A. Slotnick, Cleveland State University

Available at: https://works.bepress.com/susan-slotnick/13/

http://www.csuohio.edu/
https://works.bepress.com/susan-slotnick/
https://works.bepress.com/susan-slotnick/13/

*Corresponding author. Tel.: #1-602-543-6121; fax: #1-602-543-6221.
E-mail address: slotnick@asu.edu (S.A. Slotnick).

Computers & Operations Research 29 (2002) 1081}1098

Multi-period job selection:
planning work loads to maximize pro"t

Herbert F. Lewis!, Susan A. Slotnick"!*
!W. Averell Harriman School for Management and Policy, State University of New York at Stony Brook, Stony Brook,

NY 11794-3775, USA
"School of Management, Arizona State University West, 4701 West Thunderbird Road, P.O. Box 3100,

MC 2451, Phoenix, AZ 85069-37100, USA

Received 1 May 2000; received in revised form 1 October 2000

Abstract

We examine the pro"tability of job selection decisions over a number of periods when current orders
exceed capacity with the objective of maximizing pro"t (per-job revenue net of processing costs, minus
weighted lateness costs), and when rejecting a job will result in no future jobs from that customer. First we
present an optimal dynamic programming algorithm, taking advantage of the structure of the problem to
reduce the computational burden. Next we develop a number of myopic heuristics and run computational
tests using the DP as benchmark for small problems and the best heuristic as benchmark for larger problems.
We "nd one heuristic that produces near-optimal results for small problems, is tractable for larger problems,
and requires the same information as the dynamic program (current and future orders), and another that
produces good results using historical information. Our results have implications for when it is more or less
worthwhile to expend resources to maintain past records and obtain future information about orders.

Scope and purpose

The purpose of this paper is to investigate trade-o!s between accepting or rejecting job orders, completing
processing on time and guaranteeing timeliness with money-back guarantees, when job selection decisions
will a!ect future orders. These issues are important to "rms that must balance short- and long-term
pro"tability and maintain their customer base in competitive markets. We present a multi-period model that
can be solved optimally with a dynamic program, and develop several heuristics which we evaluate with
computational studies. We "nd that our heuristics that use either historical information or future estimates of
sales produce good results for relatively large problems without the computational limitation of the optimal
procedure. Our studies provide insights into when it is worthwhile for a "rm to keep (and process) historical

0305-0548/02/$ - see front matter ! 2002 Elsevier Science Ltd. All rights reserved.
PII: S 0 3 0 5 - 0 5 4 8 (0 0) 0 0 1 0 5 - 2

sales information, and seek accurate estimates of future orders. ! 2002 Elsevier Science Ltd. All rights
reserved.

Keywords: Job selection; Scheduling; Heuristics; Dynamic programming

1. Introduction

In increasingly competitive global markets, manufacturing "rms and service providers must
balance short-term with longer-range pro"tability while maintaining market share. In order to
manage demand as well as capacity, "rms must sometimes reject jobs in order to maximize pro"ts.
For example, banks have found that while a favored customer may generate over $1000 in annual
pro"t, another customer may actually cost the bank as much as $500 per year. As a result, some
banks may actively discourage less pro"table customers [1]. Manufacturers also face the issue of
whether to reject some orders, and if so, which to reject. Not considering the e!ect of accepting
orders on capacity may result in some jobs costing the "rm money [2], as well as a!ecting the
service level for all customers. When on-time delivery of goods and services is an important aspect
of the "rm's competitive strategy, it may be necessary to reject some jobs in order to avoid
processing delays for the most pro"table orders. On the other hand, "rms must take into account
the possible long-term e!ects of rejecting customers, in terms of reputation and future business
[3,4].

We examine the dynamics of the tradeo!s between accepting or rejecting job orders, completing
processing on time, and guaranteeing timeliness with money-back guarantees, when the decision of
the "rm to accept or reject a customer will a!ect future orders. We model a manufacturing or
service facility where customers submit jobs with known processing times, due-dates, and revenues.
A customer weight (which re#ects the importance of meeting the requested due-date by multiplying
the proportional lateness penalty) is also associated with each job. The objective is to maximize
pro"t, which is the sum of the revenue net of processing costs brought in by each job accepted,
minus any lateness penalties, and with a premium for early delivery.

Like the earlier studies on which this paper builds [5,6], we use the criterion of lateness (rather
than tardiness, which would have no bene"t for early delivery) because we rely on optimal
sequencing for our procedures. For lateness, we can simply use WSPT order, while for tardiness the
sequencing problem is NP-hard [7]. Given an optimal procedure to minimize weighted tardiness,
our dynamic program would be unchanged, and the heuristics could be easily adapted.

The "rm may reject jobs that it does not consider to be pro"table, in terms of the present revenue
of the job and possible future orders. We model a highly competitive market: if a job is rejected, that
customer will never return. Since the one-period problem has been shown to be NP-hard [6], we
present an optimal solution method for the multi-period problem for a small number of jobs, and
computational studies using heuristic methods for larger problems.

Our optimal procedure is a dynamic program that exploits the structure of the problem to
reduce the computational burden. We also develop several heuristics that use varying amounts of
information about current, past and future sales, and test them using the dynamic program as

1082 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

a benchmark. We "nd that a heuristic that uses the same information as the optimal procedure
(future information) produces near-optimal results for small problems, and runs in a fraction of the
time needed for the dynamic program. In a second computational study with larger problems, we
"nd that this heuristic still dominates the others. A second heuristic, using historical information, is
signi"cantly better than the procedure that only looks at current data. Both of these heuristics are
particularly dominant when customer characteristics are relatively more heterogeneous, suggesting
that under these conditions, it may be worthwhile for the "rm to retain historical data, and to
improve its forecasting accuracy along with seeking advance orders from customers.

The next section discusses related work on job selection. Section 3 introduces the model, and
Section 4 presents solution methods, including the optimal dynamic programming formulation and
myopic heuristics. Section 5 presents the results of our computational studies. Section 6 includes
our conclusions and implications for future research.

2. Related work

The issue of job selection has been a topic of growing interest in the last dozen years. Approaches
to this problem include mathematical programming [5,6,8}10], simulated annealing and tabu
search [11], simulation [12], and queueing theory [13}17]. About half of these studies use
minimization of time-related penalties such as tardiness as the objective. Duenyas and Hopp [15]
and Duenyas [16] develop queueing models that allow customers to leave if the due-date o!ered by
the "rm is too long. The objective is to maximize pro"t, and the decisions are sequencing and
setting of due-dates. De et al. [10] look at the problem with stochastic processing times and
due-dates.

Job selection has also been considered in terms of capacity allocation. Balakrishnan et al. [18]
model short-life-cycle orders during a single "xed planning period, and develop policies for
capacity rationing that discriminate between two classes of products, and test the sensitivity of the
resulting policy to forecast errors [19]. Fransoo et al. [20] use a two-level hierarchical model which
selectively allocates capacity by making lot-sizing and scheduling decisions in a facility that
produces multiple products.

The present paper is an extension of the one-period, deterministic model of Slotnick and Morton
[5]. To our knowledge, it is the "rst investigation of this problem in a multiperiod setting.

3. The model

Consider a "rm that processes jobs, over a set number of time periods (stages) within a given time
horizon. The "rm has m customers at the beginning of the "rst period; each customer submits one
job at each stage, until one of her jobs is rejected. Each job has a predetermined revenue, and the
"rm pays back a discount to customers whose jobs are completed past a predetermined due-date;
customers are willing to pay a premium for early delivery. Each job has a known processing time
and importance weight (multiplied times lateness to determine penalty amount). This weight allows
the "rm to indicate that certain jobs may have an importance beyond their immediate pro"t. For
example, a potential customer may submit a test order which is not particularly lucrative itself;

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1083

however, "nishing it on time will result in additional business in the future. Such a job will have
a relatively large importance weight, to ensure a high priority in the shop.

The "rm has the option of rejecting any job. If a job is rejected, the customer is lost (i.e., never
sends another job to be processed within the time horizon). The "rm must decide which set of jobs
to accept in each time period, in order to maximize pro"t over the time horizon. At the beginning of
each period, the "rm has available the set of jobs that have been submitted for processing; it also
has information about the characteristics (revenue, due-date, processing time and weight) of past
and future jobs. We assume that all jobs "nish processing in the same period in which they are
submitted. Let x

!
be the subset of jobs to be processed in period k; m-dimensional vector (where

m is the number of customers) of 1's (customers whose jobs are accepted in period k) and 0's
(customers whose jobs are rejected in k or in a previous period). This is the state variable. x

!!"
is the

ith element of x
!
. Let u

!
be subset of jobs to reject in period k; m-dimensional vector (where m is the

number of customers) of 0's (customers whose jobs are accepted or not submitted in period k) and
1's (customers whose jobs will be rejected in period k). This is the decision variable. u

!!"
is the ith

element of u
!
.

Constraints on x and u:

x
!#"!"

)x
!!"

∀i, k, (1)

u
!#"!"

)x
!!"

∀i, k, (2)

x
#!"

"1 ∀i, (3)

$
!
!$"

u
!!"

)1 ∀i. (4)

Constraint (1) indicates that once job i has been rejected, the customer is lost forever. Constraint (2)
means that we cannot reject the job of a customer that has been rejected previously. Constraint (3)
indicates that all customers submit jobs initially, and constraint (4) says that a customer's job can
only be rejected once.

Discrete-time equation:

x
!#"

"x
!
!u

!#"
. (5)

This indicates that the next state is the current state minus any jobs rejected in that next
period.

Proxt for period k:

!
!
" %

!
"$"

x
!!"

[r
!!"

!w
!!"

(C
!!"

!d
!!"

)], (6)

where r
!!"

is the assigned revenue of job i in period k, w
!!"

is the weight (proportional lateness
discount) of job i in period k, C

!!"
is the completion time of job i in period k; i.e. C

!!"
"!"

&$"
t
!!&

,
where t

!!&
is the processing time of job j in period k, with jobs arranged in WSPT order to minimize

lateness costs, and d
!!"

is the due-date for job i in period k.

1084 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

Proxt for N periods:

!" $
!
!$"

%
!
"$"

x
!!"

[r
!!"

!w
!!"

(C
!!"

!d
!!"

)]. (7)

We are looking for an optimal policy for choosing u
!#"

for each x
!
, that maximizes !.

4. Solution methods

4.1. Dynamic program

The size of the state space and the action space of the dynamic program is large. For m customers
(each of whom submits one job per period) there are 2% states in each stage, and 3% actions between
consecutive stages, where each state represents a possible subset of jobs to be processed in that
period. We can count the total number of actions between stages by grouping the states that have
the same number of jobs. In a given stage, there are (%

#
) empty states which can only lead to 1"2#

state (the empty state) in the next stage; (%
"
) states containing one job which can lead to 2"2" states

(the state containing that job and the empty state) in the next stage; (%
%
) states containing 2 jobs

which can each lead to 4"2% states (the state containing both jobs, the state containing one of the
jobs, the state containing the other job, and the empty state) in the next stage, and so on. In general,
there are (%

"
) states containing i jobs which can each lead to 2" states in the next stage. Thus, the total

number of actions is (%
#
)2##(%

"
)2"#(%

%
)2%#2#(%

%
)2%"(1#2)%"3% by the Binomial Theorem

[21]. As a result, a 20-job problem has O(2%#) states per stage (1.05 million) and O(3%#) actions
between stages (3.5 billion).

In order to solve problems of modest size, we will show how we can exploit the structure of the
problem to reduce the number of actions which must be searched in each iteration by several orders
of magnitude, from 3% to 2%#m2%&" (for a 20-job problem, from almost 3.5 billion to just over
11.5 million). Intuitively, we keep track of states that have already been visited in a given stage, and
so do not have to process them more than once.

We "rst summarize the algorithm and show formally why our method reduces computation. We
then demonstrate how this procedure works on a small sample problem.

We "rst construct a directed acyclic graph containing 2% vertices and m2%&" arcs. Each vertex
represents a state in a stage of the dynamic program. An arc is drawn from vertex x to vertex y if
and only if both of the following properties hold:

(1) All jobs included in the state represented by vertex x are included in the state represented by
vertex y.

(2) The state represented by vertex y includes exactly one job not included in the state represented
by vertex x.

This graph will be used to keep track of which states can lead to other states from stage to stage.

Theorem 1. There are 2% vertices and m2%&" arcs in the directed acyclic graph.

Proof. Since each vertex represents a state (subset of jobs), in an m-customer problem, there are
2% states (vertices in the directed acyclic graph). The vertices can be grouped according to the

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1085

number of jobs in the subset. There are (%
#
) empty states, (%

"
) states containing one job, etc. In general

there are (%
"
) states containing i jobs. Arcs go from state x to state y where y contains all jobs in

x plus exactly one job not in x. Thus, a given state with i jobs has (m!i) arcs leaving it. There are
(%
"
)(m!i) arcs leaving all vertices containing i jobs. The total number of arcs is

%
!
"$#
!
m

i "(m!i)"m
%
!
"$#
!
m

i "!
%
!
"$#

i!
m

i ". (8)

It can be shown [21] that

%
!
"$#
!
m

i ""2%

and

%
!
"$#

i!
m

i ""m2%&".

Thus

%
!
"$#
!
m

i "(m!i)"m2%!m2%&""m2%&" ! (9)

Procedure
(1) For the last stage, N, calculate the single-stage pro"t !

$
for each state (jobs arranged in WSPT

order). As the pro"t for each state is determined, insert the state into a binary tree so that
a depth-"rst search traversal of the tree results in a list of states sorted by decreasing pro"t.

(2) For each remaining stage k (from N!1 to 1), perform a depth-"rst traversal of the binary tree
constructed during stage k#1. Consider s, the state currently being visited in the traversal of
the binary tree constructed during stage k#1. Exactly one of the following conditions will hold:
(a) State s in stage k has already been processed. In this case, visit the next state in the traversal

of the binary tree constructed during stage k#1.
(b) State s in stage k has not been processed. In this case, process state s in stage k as follows:

(i) Let s(
!

denote the state in stage k that is currently being processed, and s
!#"

denote the
state in stage k#1 that is currently being visited in the binary tree.

(ii) Calculate the single-stage pro"t, !(s(
!
), associated with state s(

!
. That is, "nd the pro"t in

this stage of this subset of jobs.
(iii) Add !H(s

!#"
), the total pro"t associated with state s

!#"
(that is, the pro"t of the state

with the highest pro"t to which the current state can go in the next period) to !(s(
!
) to

determine the total pro"t !H(s(
!
) for state s(

!
(over all stages processed thus far, i.e., k to

N). If we proceed from here to the end of the planning horizon with this decision (subset),
this is what the total pro"t would be. The recursion formula for this decision is

!H(s(
!
)"(!(s(

!
)#!H(s

!#"
)).

(iv) Insert state s(
!

into the binary tree for stage k so that a depth-"rst search traversal of the
tree will result in a list of states sorted by decreasing total pro"t.

1086 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

Table 1
Sample problem: single-stage pro"ts

State Stage

1 2 3

! 0 0 0
A 3 2 2
B 1 3.5 1
C 2 3 5.5
A, B 4 4.5 4
A, C 3 4 5
B, C 5.5 2 3.5
A, B, C 2 6 4.5

(v) Choose state s
!#"

as the state in stage k#1 to which the current state s(
!

will go, and
mark state s(

!
as processed.

(vi) Search the descendant nodes of s(
!
, using the directed acyclic graph to keep track of what

has been processed so far. Repeat steps (i)}(v) above for descendants which have yet to be
processed.

(3) To "nd the optimal path, "nd the state with the highest pro"t in stage 1 (the rightmost node in
the tree), and take the path with the highest pro"t to the "nal stage. The stage 1 pro"t is the
optimal total pro"t.

Theorem 2. If the problem is processed in this manner, the optimal solution will be found with the
number of searches during each period reduced from 3% to 2%#m2%&".

Proof. During each period, each state is searched once directly from the depth-"rst traversal of the
binary tree constructed for the next period, as well as once when each of its immediate predecessors
in the directed acyclic graph is processed. The size of the "rst search corresponds to the number of
vertices in the directed acyclic graph, and the size of the second is the number of edges in the
directed acyclic graph. From Theorem 1, there are 2% vertices and m2%&" edges in the directed
acyclic graph. Thus the total number of searches per period is 2%#m2%&". !

Example. Consider a three-period problem, with three customers, each of whom submits one job
each period. The single-period pro"ts for each state in each stage are given in Table 1. For the three
jobs A, B and C in each period, we construct the directed acyclic graph shown in Fig. 1. Note that
there are 2% or 8 nodes and m2%&" or 12 edges. Each node comprises a state in the dynamic
programming problem, and represents a choice of subset of jobs to be processed.

Now construct a binary tree for period 3, the "nal stage. First let the root node be the empty set
(all jobs rejected). Then calculate the single-stage pro"t for the "rst state (say "A#). If the pro"t is
greater than or equal to the pro"t for the root node, insert the node for this state on a right branch
from the root; otherwise insert it on a left branch. Continue to calculate pro"ts and insert nodes

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1087

Fig. 1. Directed acyclic graph for sample problem.

Fig. 2. Binary tree for period 3.

until you have covered all of the eight states. The completed binary tree is shown in Fig. 2 (the
pro"ts are indicated below the jobs). Note that a depth-"rst search of this tree would result in a list
of states sorted by decreasing total pro"t. That is, if you keep branching right, you will reach the
highest total pro"t (here, it is "C# with a pro"t of 5.5).

Next construct a binary tree for period (stage) 2. Set as root node the node that has the largest
pro"t in period 3. Here it is "C#, which had a pro"t of 5.5 in period 3. In period 2, "C# has a pro"t of
3; adding the two pro"t values yields 8.5. Consider the children of this node (looking at the directed

1088 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

Fig. 3. Partial binary tree for period 2.

Fig. 4. Partial binary tree for period 2: Children of "A,C# and "B,C#.

Fig. 5. Binary tree for period 2.

acyclic graph in Fig. 1, these are the nodes "A, C# and "B, C#). Calculate the single-stage pro"t for
each of these nodes, add it to the pro"t of "C#, the best state that each of these states can go to
period 3, and insert into the binary tree for period 2. The partial binary tree for period 2 is shown in
Fig. 3. Next do the same for the child(ren) of "A,C# and "B,C#, namely "A, B, C#; see Fig. 4.

Now look at the unprocessed node from period 3 that has the next largest pro"t; this is "A,B#
(since "A,C# and "A, B,C# have already been processed). Continue processing nodes in this manner
until all of the states in period 2 have been accounted for. The "nished binary tree for period 2 is
shown in Fig. 5.

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1089

Fig. 6. Binary tree for period 1.

Table 2
Sample problem: results

State Period

1 2 3

Best pro"t Next state Best pro"t Next state Best pro"t Next state

! 0 ! 0 ! 0 *
A 7 A 4 A 2 *
B 5.5 B 4.5 B 1 *
C 10.5 C 8.5 C 5.5 *
A, B 12.5 A, B 8.5 A, B 4 *
A, C 12.5 A, C 9.5 C 5 *
B, C 14 C 7.5 C 3.5 *
A, B, C 13.5 A, B, C 11.5 C 4.5 *

Now connect each node in period 2 with the node in the next period that has the highest total
pro"t; this will be the optimal path. For example, for node "C# the optimal path from period 2 to
period 3 is "C#P"C#; for "A,B, C# it is "A,B, C#P"C#. We only need to keep track of these paths
on the backward iterations of the dynamic program. Keep processing backward through the "rst
period, and then trace the optimal path forward starting at the state in period 1 with the highest
total pro"t. The binary tree for period 1 is shown in Fig. 6.

Now we can determine the optimal path by working from the state with the highest pro"t in
period 1 (i.e. "B,C#) through period 2 (i.e. "C#) to period 3 ("C#). Thus the optimal path is
"B,C#P"C#P"C#, with a pro"t of 14. See Table 2, where `best pro"ta is the optimal pro"t from

1090 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

this stage to the last one, and `next statea is the best state in the next stage; the optimal path is
indicated in bold-face type. This means that in the "rst period, jobs B and C should be accepted for
processing (and A rejected); in the second and third periods, only process C (reject B in period 2).

4.2. Heuristic methods

Even with our reduction in search space, the combinatorics of the problem preclude the solution
of problems of any considerable size with our dynamic programming method. In order to solve
larger problems (and solve smaller problems much faster), we develop a number of heuristics.

These heuristics use previous results [5] and extend them to the multi-period case. The myopic
index indicates which jobs are de"nitely members of the optimal set in the one-period problem, and
which are possibly not part of the optimal solution, by considering the combination of each job's
contribution to revenue and to the lateness of the jobs sequenced after it. We "rst determine
whether a job is worth keeping in a single-period case (step 1). We only consider rejecting those jobs
that we are not certain are members of the optimal set (see Slotnick and Morton [5]), using
information that we have about this customer in the past and the future.

4.2.1. Current myopic index
This "rst heuristic (MCH) simply rejects jobs, one by one, that will improve pro"tability in the

current period if they are rejected. Once the available set has only jobs whose rejection will decrease
pro"t, the heuristic terminates. In each stage the number of operations is O(m%) where m is the
number of customers, signi"cantly smaller than the dynamic program.
(1) For each period, put jobs into WSPT order (to minimize weighted lateness) and calculate the

myopic index $
!!"

for each job i:

$
!!"

"t
!!"

%
!

&$"#"

w
!!&

#w
!!"

(C
!!"

!d
!!"

)!r
!!"

.

(2) For the subset of jobs for which $
!!"

'0, reject the job for which $
!!"

is largest.
(3) If a job is rejected, recalculate the $

!!"
's for the remaining jobs, and return to step 2.

(4) When $
!!"

)0 for all remaining jobs, stop. This is the subset of jobs to accept this period.

4.2.2. Historic myopic average
For this heuristic (MHH), we "rst determine whether a job is worth keeping in a single-period

case (step 1). If we may want to discard it, we look at how jobs from this customer have contributed
to pro"t and lateness in previous periods (steps 2 and 3), so that we are considering a pro"le of the
customer rather than just the current job. In each stage the number of operations is O(m') where
m is the number of customers; so this heuristic runs signi"cantly more quickly than the dynamic
programming algorithm.
(1) For each period, put jobs into WSPT order (to minimize weighted lateness) and calculate the

myopic index $
!!"

as above.
(2) For those jobs for which $

!!"
'0, consider the historic myopic average (average of this index

for all jobs from this customer, including this one, through this period).

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1091

(3) If the myopic average is nonnegative, then delete this job starting in the current period. Results
from Slotnick and Morton [5] show that if a job's myopic index calculated for any set is
positive (i.e., that job may not be pro"table in this period), it will also be positive for any subset,
and so by using the full set of jobs to calculate the index for each period we are being
conservative about rejecting jobs.

(4) If a job is deleted, recalculate the $
!!"
's for the remaining jobs, and return to step 2.

(5) When $
!!"

)0 for all remaining jobs, stop. This is the subset of jobs to accept this period.

4.2.3. Future myopic average
This method (MFH) uses the myopic index in a forward-looking manner. If we have some

knowledge of characteristics (weight, processing time, due-date and revenue) of future jobs, we can
base our acceptance of current jobs on the value of a customer's business in the future. This method
assumes that we know characteristics of incoming jobs until the end of the planning horizon. In
each stage, the number of operations is O(nm') where n is the number of periods in the planning
horizon and m is the number of customers.

(1) For each period, put jobs into WSPT order (to minimize weighted lateness) and calculate the
myopic index $

!!"
as above.

(2) For those jobs for which $
!!"

'0, consider the future myopic average (average of this index for
all jobs from this customer, including this one, from this period onward). In order to calculate
this average, assume that all jobs are accepted in each future period.

(3) If the myopic average is nonnegative, then reject this job in the current period.
(4) If a job is rejected, recalculate the $

!!"
's for the remaining jobs, and return to step 2.

(5) When $
!!"

)0 for all remaining jobs, stop. This is the subset of jobs to accept this period.

5. Computational studies

In order to compare our quick heuristics with optimal or near-optimal benchmarks, we ran
a number of computational tests. We divided the jobs to be processed into three di!erent types, to
represent di!erent types of customers or orders. Dividing customers into various categories is
a standard practice for service providers [22]; similar classi"cation systems are used to schedule
workforces [23] and prioritize inventory management [24]. We varied job parameters in order to
test the heuristic(s) in di!erent types of market scenarios. Homogeneous customers (tests 1}50)
serve as the baseline scenario (B). We then di!erentiated between three customer types, with regard
to processing times, revenue and weight. Processing times were i.i.d. according to an exponential
distribution. Varying the mean (tests 51}100) allowed us to represent a situation in which
customers are di!erentiated by the average length of their jobs (P). For revenue and weight, we
used a lognormal distribution and varied both the mean (for which the numbers in the table
indicate the mean of the underlying normal distribution) and standard deviation (S.D.) (tests
101}300), in order to consider more or less heterogeneous job submissions, in which customers are
di!erentiated by the amount of revenue brought in by their typical jobs, as well as the importance
weights assigned (R1, R2, W1 and W2). Table 3 shows the various scenarios that were generated.

1092 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

Table 3
Computational test: various scenarios

Scenario Test Proc. time Revenue Weight
number Mean Mean (S.D.) Mean (S.D.)

Customer
type 1 2 3 1 2 3 1 2 3

B 1}50 5.0 5.0 5.0 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1)
P 51}100 2.5 5.0 7.5 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1)
R1 101}150 5.0 5.0 5.0 0.0 (1) 1.0 (1) 2.0 (1) 1.0 (1) 1.0 (1) 1.0 (1)
R2 151}200 5.0 5.0 5.0 0.0 (2) 1.0 (2) 2.0 (2) 1.0 (1) 1.0 (1) 1.0 (1)
W1 201}250 5.0 5.0 5.0 1.0 (1) 1.0 (1) 1.0 (1) 0.0 (1) 1.0 (1) 2.0 (1)
W2 251}300 5.0 5.0 5.0 1.0 (1) 1.0 (1) 1.0 (1) 0.0 (2) 1.0 (2) 2.0 (2)

Table 4
Summary of the results from the pilot study

Scenario DP MFH MHH MCH ALL

Average Average Average Average Average Average Average Average
optimal optimal optimalpro"t pro"t
(%)

pro"t
(%)

pro"t
(%)

Pro"t

B $237 $212 87.9 $138 61.4 $130 60.0 !$374
P $276 $253 89.6 $180 66.6 $153 59.8 !$322
R1 $298 $257 83.6 $168 55.9 $160 54.7 !$278
R2 $898 $858 92.4 $471 58.5 $434 52.7 $409
W1 $393 $346 81.8 $235 59.2 $227 58.3 !$457
W2 $1865 $1786 86.6 $1074 56.3 $1058 55.7 !$1115

Bold-face indicates the attributes that are di!erent for a given test. The procedures were coded in C,
using the Microsoft C compiler, and run on a Pentium-based PC using a DOS/Windows platform.

5.1. Pilot study

The purpose of the pilot study was to test the myopic heuristics (MCH, MHH, MFH) against the
optimal benchmark provided by the dynamic program (DP). We also included a procedure that
simply accepted all jobs (ALL). For the six scenarios described above, we ran 50 sets of 6-job
problems for 5 periods. This was the largest problem that we could solve using the dynamic
program; the state space of larger problems exceeded available memory.

In Table 4, we summarize the results of the pilot study. The average pro"ts produced by the
dynamic program, by each myopic heuristic, and by ALL are listed for each scenario. Note that all
the average pro"ts produced by ALL are negative except for scenario R2, suggesting that job

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1093

Table 5
95% con"dence intervals for the proportion of times each heuristic found the optimal solution, and the average di!erence
of the heuristic's solution value and that of the optimal

Scenario Statistic MFH MHH MCH

B Proportion optimal 0.28$0.12 0.00$0.00 0.02$0.04
Avg di!erence from optimal $25$$10 $99$$31 $107$$32

P Proportion optimal 0.32$0.13 0.04$0.05 0.06$0.07
Avg di!erence from optimal $22$$9 $96$$30 $122$$34

R1 Proportion optimal 0.08$0.08 0.00$0.00 0.00$0.00
Avg di!erence from optimal $41$$13 $130$$30 $137$$32

R2 Proportion optimal 0.28$0.12 0.00$0.00 0.00$0.00
Avg di!erence from optimal $40$$20 $427$$183 $464$$183

W1 Proportion optimal 0.12$0.09 0.02$0.04 0.02$0.04
Avg di!erence from optimal $47$$22 $158$$60 $166$$62

W2 Proportion optimal 0.30$0.13 0.02$0.04 0.04$0.05
Avg di!erence from optimal $79$$69 $791$$513 $807$$517

Table 6
Results of Marascuilo's procedure for comparison among heuristics

MFH!MHH MFH!MCH MCH!MHH

Proportion di!erence 0.2167 0.2067 0.0100
Critical range 0.0616 0.0632 0.0268

rejection is usually advisable for the scenarios that we generated. We have also calculated the
average percentage of optimal pro"t produced by each heuristic for each scenario. Table 5 shows
the sample proportion of instances in which each heuristic found the optimal solution, with a 95%
con"dence interval for each scenario, and the average di!erence between the optimal pro"t and the
pro"t produced by each heuristic with a 95% con"dence interval for each scenario.

Out of 300 problem instances, the MFH found the optimal solution 69 times (23%), the MHH
found the optimal solution 4 times (1.3%), and the MCH found the optimal solution 7 times (2.3%).
We performed a %% test to determine whether the heuristics are di!erent with respect to the
proportion of problem instances in which the optimal solution was found. The results of this test
indicate that there is signi"cant di!erence among the heuristics (overall %% was 110.83 with
2 degrees of freedom and a p-value(0.00005). Speci"cally, using Marascuilo's procedure [25,26]
at &"0.05, the proportion of problem instances in which the MFH produced the optimal solution
was signi"cantly higher than that using either the MHH or the MCH. However, there was no
signi"cant di!erence between the performance of the MHH and that of the MCH. Table 6 shows
the results from Marascuilo's procedure.

We next performed a %% test to determine whether the proportion of problem instances in which
the optimal solution was found di!ered among scenarios for each of the three heuristics. The results

1094 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

Table 7
Summary of the results of the analysis of variance for each scenario of the pilot study

Scenario F-value df p-value

B 21.75 (2, 98) (0.00005
P 28.61 (2, 98) (0.00005
R1 33.57 (2, 98) (0.00005
R2 19.59 (2, 98) (0.00005
W1 14.05 (2, 98) (0.00005
W2 7.71 (2, 98) (0.00009

of this test indicate that there is a signi"cant di!erence among the scenarios using the MFH (overall
%%"14.85 with 5 degrees of freedom and a p-value"0.0110). However, there is no signi"cant
di!erence among the scenarios using the MHH (overall %%"5.07 with 5 degrees of freedom and
a p-value"0.4077) or the MCH (overall %%"6.00 with 5 degrees of freedom and a p-
value"0.3065). We used Marascuilo's procedure to compare the performance of the MFH
between pairs of scenarios. The results showed only weak signi"cance between scenario P and R1
at &"0.079 and between scenarios R1 and W2 at &"0.130.

To compare the performance of the three myopic heuristics, we performed a randomized block
design two-way analysis of variance without replication for each scenario. We used pro"t as the
dependent variable and heuristic as the treatment. Problem instance was the block. See Table 7 for
a summary of the results.

For all scenarios, the average pro"ts di!ered among the heuristics. Speci"cally, using Tukey's
HSD at &"0.05, the MFH produced signi"cantly higher average pro"ts than did either the MHH
or the MCH for all scenarios. This indicates that having information on future jobs, whether by
taking advanced orders or developing an accurate forecasting methodology, can signi"cantly
increase pro"t. However, there was no signi"cant di!erence between the performance of the MHH
and the MCH in all scenarios.

5.2. Large-scale study

In order to investigate the performance of our heuristics on larger problems than we could solve
with the dynamic program, we ran 50 sets of 30-job problems for 30 periods for the three myopic
heuristics and ALL.

In Table 8, we summarize the results of the large-scale study. The average pro"ts produced by
each myopic heuristic and by ALL are listed for each scenario. Note that all of the average pro"ts
produced by ALL are negative, indicating that we have generated scenarios in which it is pro"table
to reject jobs. We have also provided the average of the best-known pro"ts (i.e., the best answer
given by any of the heuristics) for each scenario and calculated the average percentage of the
best-known pro"t produced by each myopic heuristic for each scenario. We note that the MFH did
not always get the highest pro"t (the MHH did better 15 times or 30% for scenario B, 8 times or
16% for scenario P, 10 times or 20% for scenario R1, 4 times or 8% for scenario R2, 7 times or 14%
for scenario W1, and 1 time or 2% for scenario W2).

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1095

Table 8
Summary of the results from the large-scale study

Scenario Best known MFH MHH MCH ALL

Average Average Average Average Average Average Average Average
pro"t pro"t best (%) pro"t best (%) pro"t best (%) pro"t

B $787 $753 95.5% $611 81.2% $390 55.2% !$91,098
P $1325 $1301 97.7% $999 78.9% $544 46.0% !$84,015
R1 $1200 $1178 97.8% $980 82.6% $538 49.3% !$88,206
R2 $9607 $9595 99.7% $4783 56.1% $1946 22.9% !$65,022
W1 $1504 $' 1481 97.9% $989 71.0% $704 53.8% !$97,265
W2 $24,302 $24,293 99.4% $6525 39.6% $3890 25.6% !$158,101

Table 9
Summary of the results of the analysis of variance for each scenario of the large-scale study

Scenario F-value df p-value

B 38.05 (2, 98) (0.00005
P 79.92 (2, 98) (0.00005
R1 84.63 (2, 98) (0.00005
R2 91.07 (2, 98) (0.00005
W1 40.07 (2, 98) (0.00005
W2 39.01 (2, 98) (0.00005

To compare the performance of the three myopic heuristics, we performed a randomized block
design two-way analysis of variance without replication for each scenario. We used pro"t as the
dependent variable and heuristic as the treatment. Problem instance was the block. See Table 9 for
a summary of the results.

As in the pilot study, the average pro"ts di!ered among the heuristics for all scenarios. Using
Tukey's HSD at &"0.05, the MFH produced signi"cantly higher average pro"ts than either the
MHH or the MCH for all scenarios. This reinforces the results of the pilot study, indicating the
importance of accurate forecasting or advance orders. In contrast to the pilot study, the MHH
performed signi"cantly better than the MCH in all but the W2 scenario, indicating that the historic
information may be valuable over the long haul and thus the cost of storing and processing this
information may be worthwhile.

6. Conclusions and future research

We set out to investigate the pro"tability of job selection decisions when a "rm has too many
jobs to complete on time, and when rejecting jobs would result in loss of future business. While we

1096 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

can generate optimal results with a dynamic programming algorithm, the combinatorics limit the
size of the problems that we can consider. Using the same information that would be provided to
the dynamic program (predictions of future sales, which could come from advance orders or
demand forecasting), our future myopic average heuristic does not share these computational
limitations, and gets results for small problems that are on average always less than 20% worse
than optimal. For larger problems, it clearly dominated the other heuristics. Another myopic
heuristic that only requires past sales information (MHH) is clearly better than the strictly myopic
method (MCH) as problems grow large.

Our results provide insights about the value of information to a manufacturing "rm under
di!ering market conditions. When jobs are relatively heterogenous with regard to revenue and
customer weight (R2, W2), the heuristics that use more than simply current information (MFH,
MHH) signi"cantly outperform the others (MCH, ALL). This implies that when customers are
widely di!erentiated by per-job revenue and weight, it may be worthwhile for a "rm to expend
resources to maintain and process historical sales information, as well as improving the accuracy of
its forecasts, and working with customers to gain as much information as possible about future
orders.

Extensions of the present model might include more complicated `rulesa for job submission. For
example, we might decrease submission frequency from a given customer if previous orders have
been delivered late, or if many jobs are delivered late in any given period (reputation e!ect). We
might also allow customers to enter as well as leave.

Acknowledgements

We would like to thank Thomas R. Sexton of the State University of New York at Stony Brook
for his helpful comments in general and his assistance with the statistical analysis of the computa-
tional studies in particular.

References

[1] Brooks R. Alienating customers isn't always a bad idea, many "rms discover. Wall Street Journal 7 January
1999;A1.

[2] Guerrero HH, Kern GM. How to more e!ectively accept and refuse orders. Production and Inventory Manage-
ment 1988;29(4):59}63.

[3] Shapiro B, Moriarty RT, Kline CE, Fabtek(A). Boston, MA, 1992. Harvard Business School Case Study No.
9-592-095.

[4] Shapiro B. Fabtek(A) & (B). Boston, MA, 1992. Harvard Business School Teaching Note No. 5-593-006.
[5] Slotnick SA, Morton TE. Selecting jobs for a heavily loaded shop with lateness penalties. Computers & Operations

Research 1996;23(2):131}40.
[6] Ghosh JB. Job selection in a heavily loaded shop. Computers & Operations Research 1997;24(2):141}5.
[7] Pinedo M. Scheduling: theory, algorithms, and systems. Englewood Cli!s, NJ: Prentice-Hall, 1995.
[8] Pourbabi B. A short term production planning and scheduling model. Engineering Costs and Production

Economics 1989;18:159}67.
[9] Pourbabi B. Optimal selection of orders in a just-in-time manufacturing environment: a loading model for

a computer integrated manufacturing system. International Journal of Computer Integrated Manufacturing
1992;5(1):38}44.

H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098 1097

[10] De P, Ghosh JB, Wells CE. Job selection and sequencing on a single machine in a random environment. European
Journal of Operational Research 1993;70:425}31.

[11] Woodru! DL. Subcontracting when there are setups, deadline and tooling costs. In: Scherer WT, Brown DE,
editors. Proceedings of the Intelligent Scheduling Systems Symposium. November 1992. p. 337}53.

[12] Wester FAW, Wijngaard J, Zijm WHM. Order acceptance strategies in a production-to-order environment with
setup times and due-dates. International Journal of Production Research 1992;30(6):1313}26.

[13] Wein LM. Due-date setting and priority sequencing in a multiclass M/G/1 queue. Management Science
1991;37(7):834}50.

[14] Deallaert NP. Due-date setting and production control. International Journal of Production Economics
1991;23:59}67.

[15] Duenyas I, Hopp WC. Quoting customer lead times. Management Science 1995;41(1):43}57.
[16] Duenyas I. Single facility due date setting with multiple customer classes. Management Science 1995;41(4):608}19.
[17] Garbe R, Glazebrook KD. Submodular returns and greedy heurisitcs for queueing scheduling problems. Opera-

tions Research 1998;46(3):336}46.
[18] Balakrishnan N, Patterson JW, Sridharan SV. Rationing capacity between two product classes. Decision Sciences

1996;27(2):185}214.
[19] Balakrishnan N, Patterson JW, Sridharan SV. Robustness of capacity rationing policies. European Journal of

Operational Research 1999;115:328}38.
[20] Fransoo JF, Sridharan V, Bertrand JWM. A hierarchical approach for capacity coordination in multiple products

single-machine production systems with stationary stochastic demands. European Journal of Operational Research
1995;86(1):57}72.

[21] Tucker A. Applied combinatorics. New York: Wiley, 1980.
[22] Coleshaw J. Getting the best out of customers. Management Today, May 1986.
[23] Bucholtz C. Pac Bell uses force to cut response time. Telephony 1996;231(2):7.
[24] Russell RS, Taylor BW. Operations management, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1998.
[25] Marascuilo LA. Large-sample multiple comparisons. Psychological Bulletin 1966;65:280}90.
[26] Marascuilo LA, McSweeney M. Nonparametric and distribution-free methods for the social sciences. Paci"c

Grove, CA: Brooks/Cole, 1977.

Herbert F. Lewis is a Lecturer at the W. Averell Harriman School of Management and Policy at the State University of
New York at Stony Brook. He received his Ph.D. from the Department of Applied Mathematics and Statistics at the
State University of New York at Stony Brook. His research interests include solution methods for combinatorial
problems in the areas of scheduling, vehicle routing, and facility location, as well as productivity and e$ciency analysis
using data envelopment analysis.

Susan A. Slotnick is Assistant Professor at the School of Management at Arizona State University West. She received
her Ph.D. from the Graduate School of Industrial Administration at Carnegie Mellon University. She also holds a Ph.D.
in Linguistics from Columbia University. Her research interests include heuristic and knowledge-based approaches to
scheduling and quantitative modeling of managerial decision-making in the areas of quality management and new
product development.

1098 H.F. Lewis, S.A. Slotnick / Computers & Operations Research 29 (2002) 1081}1098

	Cleveland State University
	From the SelectedWorks of Susan Slotnick
	2002

	Multi-Period Job Selection: Planning Work Loads to Maximize Profit
	PII: S0305-0548(00)00105-2

