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Explaining Quantitative Systems to Uninitiated Users
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Abstract—The importance of explanation in expert systems has been documented from the early
days of their development; there is an equally pressing need for explanation in systems that employ
a decision-making process based on quantitative reasoning. This is particularly necessary for users
who do not have a sophisticated understanding of the formal apparatus that the system employs to
reach its decisions. In order to generate meaningful answers to questions asked by such unsophisti-
cated users, an explanation facility must translate the formal structures of the problem solving
system into the concepts with which the user understands the problem domain. Previous work on
the explanation of quantitative systems is based on the assumption that the user has at least a basic
grasp of the formal approach of the problem solving system. However, in realistic application
situations, it is more likely the case that in order for the human user to understand why a mathemati-
cally-based advice-giving system makes the suggestions that it does, the problem solving rationale
of the system must be explained in the user’s own terms, which are typically different from those
of the mathematical system. To develop an explanation methodology that is capable of justifying
the results of a system based on quantitative reasoning to an uninitiated user, we employ a represen-
tation that enables our explanation facility to translate the abstract mathematical relationships that
make up a quantitative system into the domain-specific concepts with which a typical user approaches
the problem solving task. In our system, the process of generating explanations, therefore, involves
translating one set of concepts into another. An added feature of this system is that it is capable
of providing explanations from two perspectives: that of the quantitative problem solving system,
and that of the human user who is familiar with the domain problem but not with the mathematical
approach. We have implemented this approach to explaining quantitative systems by creating an
explanation facility for a problem in the manufacturing domain. This facility responds to user
queries about a scheduling system that uses a mathematically-based heuristic to choose jobs for
an annealing furnace.

1. INTRODUCTION vital need for explanation in systems that employ a
decision-making process based on quantitative reason-
ing. By ‘‘*quantitative reasoning’’ we mean reasoning
that is based on mathematical models; this includes
mathematical heuristics as well as provably optimal
methods. This is essential in particular for users who
do not have a sophisticated understanding of the math-
ematical apparatus that the system employs to reach
its decisions. In order to generate meaningful answers
to questions asked by such ‘‘unsophisticated’’ users,
an explanation facility must translate the formal struc-
tures of the quantitative system into the conceptual

IN ADDITION TO its primary function of providing deci-
sion support, an advisory expert system (such as an
automated factory-floor scheduler) must be abie to ex-
plain its reasoning and justify its conclusions. The im-
portance of explanation in expert systems has been
documented from the early days of their development
(Buchanan & Shortliffe, 1985). There is an equally
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tframework with which those users understand the
problem domain.
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Quantitative problem solving systems are a fact of
life in the arena of real-world applications, in fields
such as business forecasting, inventory control, plan-
ning, and scheduling. While expert systems are grow-
ing in number, the majority of applied decision support
systems in business and industry are still based on
quantitative problem solvers. In addition to the accept-
ability that comes from the fact that the quantitative
approach has been used in these fields for a few de-
cades, these systems also have certain advantages over
expert systems, which typically rely on heuristic prob-
lem solving knowledge obtained from human experts.
Some formal models give provably optimal solutions.
In addition, quantitative models are usually more ro-
bust, and are often easier to implement, because they
do not require the extensive knowledge engineering
that is typical of the development of knowledge-based
systems. One distinct disadvantage, however, is the
common complaint that the uninitiated user, who is
familiar with the domain but not with the mathematical
subtleties of the quantitative system, will be reluctant
to use a decision-support aid that he or she cannot
understand. In fact, there are academic systems sitting
on university shelves that might be of practical use if
they could be reliably explained to their potential users.
Moreover, many real-world problems require a combi-
nation of knowledge-based problem solving and quan-
titative reasoning (e.g., to deal with tradeoffs and un-
certainty) (Buchanan & Shortliffe, 1985; Cooper,
1984; Langlotz, Fagan, Tu, Sikic, & Shortliffe, 1987),
and therefore, techniques for explaining quantitative
reasoning are crucial for a wide range of real-world
application systems.

Previous work on the explanation of quantitative
systems ranges from simple approaches that arrange
numerical output in lists or tables (e.g., Ben-Bassat,
Carlson, & Puri, 1980; Spiegelhalter & Knill-Jones,
1984) to more ambitious attempts to mediate between
the quantitative and qualitative worlds (e.g., Ackley &
Berliner, 1983; Cooper, 1984; Langlotz, 1989). How-
ever, these approaches have two basic limitations that
make them unsuitable for explaining the results of
quantitative systems based on sophisticated mathemat-
ical models to users not familiar with the mathematical
formalism. First, common to almost all of these sys-
tems is the assumption that the user has at least a basic
grasp of the formal approach that is employed by the
problem solving system being explained. Thus, even
the systems that attempt to provide qualitative explana-
tions of numerical results do so in terms that are not
likely to be understood by users who are not familiar
with the formal model. Second, as is the case for early
rule-based expert systems (Swartout & Moore, 1993),
these facilities generally cannot provide meaningful
Justifications of their actions to users, because they do
not have a representation of the abstract problem solv-
ing model that the user understands.
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It is these two problems that are the focus of our
research. We develop a representation that enables an
explanation facility to translate the abstract mathemati-
cal relationships that make up a quantitative system
into the domain-specific concepts and strategies with
which a typical user approaches the problem solving
task. We begin with the assumption that, in order for
the human user to understand why a mathematically-
based advice-giving system makes the suggestions it
does, the problem solving rationale of the system must
be explained in the user’s conceptual framework,
which is typically different from that of the mathemati-
cal system. Since our explanation facility uses a repre-
sentation of problem solving (rather than, say, textbook
knowledge) for two models (one quantitative, one
based on human expertise) that have different struc-
tures, the process of generating explanation involves
translating one set of concepts into another. The kind
of system that we develop will ultimately be able to
provide explanations from two perspectives: that of the
quantitative problem solving system, and that of the
human user who is familiar with the domain problem
but not with the mathematical approach.

Our approach differs from previous work in two
important ways. First, we do not assume that the user
has a sophisticated understanding of the workings of
the quantitative problem solving system. This distin-
guishes our approach from that of QBKG (Ackley &
Berliner, 1983), which explains the strategies of an
automated backgamnmon player. While QBKG con-
verts numerical values into qualitative statements
about the moves it chooses to make, it need not explain
the heuristics that are embodied in the quantitative
system, since the assumption is made that these are
known to backgammon players (for example, the idea
of keeping one’s men relatively close together in order
to impede the opponent’s progress and enhance one’s
own movements). In contrast, we assume only that
the user understands the domain problem. We do not
assume that the user is familiar with the strategies used
by the mathematical model to solve that problem. The
user may have his or her own set of problem solving
strategies, not necessarily isomorphic to those of the
system. Thus, the decisions of the mathematical system
that we are explaining must be translated into the con-
cepts familiar to the user.

Our explanation facility also differs from earlier
work that deals with the issue of explanation from
different ‘‘perspectives,”” in that we are representing
two different problem solving approaches, not just dif-
ferent levels or views of the same body of knowledge.
This is why we cannot use an approach based on
“‘marking’’ different parts of a knowledge base to indi-
cate different perspectives, and then selecting those
entities or relations that are marked in order to produce
explanations for different types of users or to achieve
different communicative goals. We are not dealing
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with an encyclopedic body of facts that needs such a
strategy to constrain search (Souther, Acker, Lester, &
Porter, 1991), nor with a single knowledge base that
incorporates different viewpoints (Cohen, Jones, San-
mugasunderam, Spencer, & Dent, 1989; McKeown,
1988), nor with two models of the domain whose dif-
ferences point to misconceptions that need to be cor-
rected (McCoy, 1989). Our two problem solving mod-
els consist of different concepts and have different
structures, and so we must represent them separately,
and provide a way of translating between them in order
to generate meaningful explanations.

We apply this approach to explaining the deci-
sions of an automated scheduling system that uses a
mathematically-based heuristic to schedule a factory
floor. The innovation of this work lies in the way
that it moderates between the conceptual worlds of
the mathematical system and that of the human
scheduler. The mathematical scheduling system con-
siders some of the same factors used by the human
scheduler, but also employs mathematical concepts
and procedures that have no counterpart in the con-
ceptual world of the human user. The explanation
facility that we have developed, called Quantitative
EXplainer (QEX), is intended to facilitate the use of
this scheduling system by a human being on the
factory floor who welcomes the assistance of an au-
tomated scheduler, but is more likely to use such a
system if it is capable of explaining its suggestions
in nonmathematical concepts and terminology.

It is important to note that the feasibility of an expla-
nation system that uses this kind of translation depends
on the characteristics of and relationship between the
two conceptual worlds. If the two worlds have no con-
cepts at all in common, then this kind of explanation
is not possible; at the other end of the continuum, two
isomorphic worlds render this approach unnecessary. It
is on the middle ground, where there are two different
structures with some mutual components, that systems
like QEX can make a contribution. Even though there
will always be some mathematical concepts that cannot
be imparted to the user, because they do not have close
equivalents in that user’s conceptual world, we claim
that it is both possible and worthwhile to do this kind
of explanation.

For the QEX approach to be feasible and useful, the
nature of the relationship between the two conceptual
worlds must have the following properties. First of
all, the two problem solving approaches must share
the same top-level goals. If this is not the case, then
it does not make sense to translate between lower-
level goals because the two systems are in essence
solving different problems. Second, it follows that
most if not all of the primitive concepts (e.g., pro-
cessing time, length of queues, or number of machines
set up tor a certain product in our manufacturing do-
main) should exist in both worlds, because they are
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characteristics of the problem itself. Third, in the ideal
case, every concept in the quantitative system that is
not directly translatable into the human’s conceptual
world can be broken down (at some level) into com-
ponents that are translatable. If this is not the case,
then there are some justifications of the decisions of
the quantitative system that cannot be imparted to the
nontechnical user. In contrast, the existence of user’s
concepts that are not shared by the mathematical sys-
tem has a less deleterious effect on the explanations
generated; though the user will never have the satis-
faction of seeing these particular reasons in an expla-
nation, there is no loss of information about what the
mathematical system actually did.

Our system is similar to the REX system developed
by Wick and Thompson (1992). REX decouples the
“‘line of reasoning’’ used by the expert system to solve
the problem from the ‘‘line of explanation’ used to
justify the system’s conclusion. Given the result pro-
duced by the expert system and a set of ‘‘reasoning
cues’’ that represent key data and inferences used by
the expert system during its problem solving, the ex-
plainer uses a separate body of ‘‘explanatory knowl-
edge’’ to ‘‘reconstruct’ an explanation that leads from
the initial data to the final conclusion. That is, the
explainer re-solves the problem using its own knowl-
edge base. By varying the ‘‘reasoning cues’’ provided,
the degree of coupling between the expert system’s
reasoning and the justification of the conclusion can
be varied. An advantage of this approach is that during
reconstruction the explainer may add additional evi-
dence for the conclusion that was not used in the origi-
nal problem solving.

However, we see three aspects of the REX approach
that make it unsuitable for our current purposes. First,
it requires that two complete problem solving systems
be built. In our case, the scheduler’s model represents,
in successive levels of detail, the factors that contribute
to a conclusion and relationships between them. The
model is not a complete problem solver. Second, de-
pending on the number of reasoning cues provided,
REX’s explanations vary between being a paraphrase
of the expert system’s line of reasoning (completely
coupled) to a ratification of the expert system’s conclu-
sion (decoupled). In QEX, we are interested in translat-
ing the quantitative system’s reasoning into a form the
human scheduler understands. Finally, the explanation
knowledge base in REX differs from the expert system
knowledge base in that it includes idealized strategies
for solving problems, deeper knowledge of the domain,
and alternative strategies that are not necessary for the
expert system’s problem solving. Thus, it is a variant
of the same conceptual model used by the expert system,
that is, REX makes the assumption that the user’s view
of the domain has much in common with that of the
expert system. In QEX, the scheduler’s model represents
a different conceptual framework, and therefore, a trans-
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lation process is necessary. We believe that a REX-style
system could be used for our task, but that such a system
would still require the type of mapping that we provide
in QEX in order to translate expert system concepts and
relations into concepts and relations in the explanation
knowledge base. Thus, the approaches are complemen-
tary. In future work, we wish to investigate extending
the REX approach for our task.

2. THE DOMAIN PROBLEM AND THE
QUANTITATIVE SOLUTION

2.1. The Factory Floor Scheduling Problem

QEX was developed in order to explain a system that
produces factory floor schedules for the Westinghouse
Specialty Metals Plant in Blairsville, PA, which pro-
duces fuel and instrument tubes for fuel assemblies of
nuclear reactors. These tubes are processed in three
steps. The first is a cold-extrusion step, in which a tube
is reduced in diameter and lengthened by pushing it
through a metal die. In the second step, the tube is
sent to an acid bath to cleanse it of grease and other
impurities. And in the third step, it is annealed in a
furnace in order to reduce brittleness, restore molecular
stability, and prepare it for the next stage of extrusion.
These three steps are repeated a number of times, until
the tube meets its final specifications. Each combina-
tion of the three steps is referred to as a pass.

Scheduling tasks in this factory include decisions
about machine setups, release of raw material, and
scheduling of jobs on the various types of machines.
Because of limited capacity, the scheduling of the an-
nealing furnace is an especially challenging task. The
furnace is one of the major bottlenecks in this factory,
running at about 90% of capacity most of the time.
Getting material through the furnace expeditiously en-
sures that products flow smoothly through the shop,
expensive extrusion machines are not kept idle, and
ultimately, the plant meets its projected demand figures
in a timely manner.

A research team from Carnegie Mellon and the Uni-
versity of Pittsburgh visited this factory twice a week
for 3 months, in order to gather information about the
machines and processes, as well as knowledge about
how the human scheduler performs the above-men-
tioned tasks. The goal of these visits was to lay the
basis for an automated scheduling system, which
would include the mathematical system as well as an
expert system, to help the schedulers in their daily
work. The team learned about manufacturing processes
and scheduling expertise through interviews with fac-
tory personnel, as well as through a kind of apprentice-
ship for scheduling tasks. Interactions with the head
scheduler—an expert with over 20 years of experi-
ence—included listening to his explications of what
he did and why, and then attempting to apply this
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knowledge by solving his daily tasks ourselves. Our
transcripts of how he explained his work, as well as
of the critiquing sessions in which he let us know how
our attempts measured up, provides the basis for the
conceptual model representing the human’s view of
the scheduling problem in QEX, as well as for the types
and phrasing of the questions and answers generated by
the explanation system.

2,2. The Mathematical Scheduling System

The mathematical scheduling system that QEX ex-
plains is based on Morton’s (1993) bottleneck dynam-
ics. As implemented for this particular application, the
bottleneck dynamics system chooses jobs (called
“‘lots’’) for the furnace by taking, from the material
available for annealing, those lots with the highest pri-
ority as determined by a benefit—cost ratio. This ratio
balances the importance of the job with the cost of
the resources that it needs to finish processing. Job
importance is determined by a weighting factor, which
in the real world may reflect customer importance or
managerial priorities, times a slack factor, which re-
flects the relationship between the time that the lot is
due and the time that it has left to process. Thus, the
priority of the job is determined by:

(weighting factor) X (slack factor)

5 (1
b (machine price X process time) )

machines left

The price of any machine is the sum of the delay
costs that would be incurred by the jobs in process and
on queue (presently and expected) for that machine, if
it were to be idle for a given period of time. The
formula for machine prices is:

L I
= (2 W,-) + WP )
(1 - p)

where L, is the current queue length on machine k;
W, is the current weighting factor for job j; W is the
average of the weights of all jobs in the shop; and p,
is the long-term utilization factor on machine k. The
first term of Equation 2 takes into account the jobs
currently on queue for the machine, and the second
term is an estimate of jobs that will be arriving in the
near future (i.e., before the machine next becomes
idle) using a known result from queuing theory. The
utilization factor reflects how close to capacity a given
machine usually runs; this is adjusted by the rest of
the formula in Equation 2 to reflect the fact that the
*‘bottleneck,”” or machine running closest to capacity,
may shift from one process to another depending on
the situation on the factory floor. A longer queue in
front of a machine will raise its price, so depending on
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the trade-off between historical utilization and actual
queue length, different machines may be bottlenecks
at different times.

Intuitively, the benefit—cost ratio (Equation 1 above)
allows ‘‘important’ jobs (those from critical customers,
or those very close to their due date) to be given higher
priority for processing, as long as their processing does
not cost the shop too much in delay costs of other jobs,
as represented by the machine prices in the denominator.
If all the lots have the same importance, then later-pass
lots (i.e., lots that are further along in the manufacturing
process) have higher benefit—cost ratios, since, all things
being equal, the denominator will be smaller because of
less processing time to go. If they are in the same pass,
those lots with higher job importance would be scheduled
first. Depending on the amount of resources to go (i.e.,
the pass number), more important material from an earlier
pass may or may not be scheduled before later-pass mate-
rial of a less important product.

3. THE QEX EXPLANATION SYSTEM

QEX produces justifications of the scheduling deci-
sions made by the bottleneck dynamics system. Users
can initiate a dialogue by asking two types of questions
(chosen from a fixed set of questions on a menu
screen). First is a “‘why’’ question, such as ‘*Why
was lot-X scheduled?”’ The second question is a “‘why
not,”” querying the reasons that a particular job was
not chosen for scheduling. After a response is gener-
ated, the user may ask follow-up questions to obtain
more details about the specific attributes of the job in
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question that led to the decision to place it on the
schedule (or not).

To produce explanations, QEX makes use of two
problem solving models: that of the human scheduler
(or other potential user of the automated scheduling
system) and that of the bottleneck dynamics system.
The scheduler views the problem in terms of satisfying
the requirements of jobs (i.e., priorities, due dates, and
customer demand) and of machines (balancing the line
$0 as to avoid either starving machines or piling up too
much material). The goals of the bottleneck dynamics
system are similar, although achieved in a different
manner: it schedules each job by balancing its impor-
tance (including its priority and relative closeness of
its due date) with the costs the plant would incur by
running the job now (the cost of resources, as measured
by delay costs of other jobs waiting to run). Both ap-
proaches take into account job priorities, due dates,
and the length of queues for various machines. The
explanation facility exploits these correspondences to
answer the queries in the user’s own terms.

Since the bottleneck dynamics system makes deci-
sions based on numerical values, questions about why
a certain job was (or was not) scheduled (and follow-
up questions asking for more details) must be answered
by determining which numerical values are significant,
and then translating this significance into terms familiar
to the human scheduler.

3.1. Overview of QEX Explanation Process

An overview of the QEX system is shown in Figure
1, where data structures are depicted in ovals and pro-

DIALOGUE
HISTORY

TEXT

USER QUERY

EXPLANATION
OPERATORS

PLANNER

HUMAN
SCHEDULER'S
STRUCTURE

INTERFACE HANDLER

TRANSLATOR

BOTTLENECK
DYNAMICS
STRUCTURE

SIGNIFICANCE
FINDER

FIGURE 1. Diagram of QEX processing modules.
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cessing modules are depicted in rectangles. As shown,
QEX is made up of a text planner and associated mod-
ules that process user queries and generate explana-
tions. It takes as input three static structures and one
dynamic structure. Two of the static structures repre-
sent the two conceptual approaches to scheduling, that
of the human scheduler and that of the boitleneck dy-
namics system. The third static structure contains a set
of explanation operators, which comprise the system’s
repertoire of strategies for producing responses to us-
er’s queries. The fourth structure represents knowledge
about the current status of the factory floor, and con-
tains two kinds of related information. The first is static
information about the “*world’” of scheduling in this
domain (products and their attributes, etc.). The second
is a dynamic structure consisting of the results of the
FORTRAN program that implements the bottleneck
dynamics model, and includes information about the
current status of the factory floor (machine setups, sta-
tus of lots, etc.), the current furnace queue and sched-
ule, and information about each lot on the queue (in-
cluding its status, size, due date, benefit—cost ratio,
and information about the processes that it has com-
pleted so far and the resources on which it has yet to
process). These structures are encoded as objects of
the Common LISP Object System (CLOS).

Using these data structures, QEX generates explana-
tions as follows. Before QEX begins, the bottleneck
dynamics system has been given a factory floor con-
figuration, has produced a schedule, and information
about the results of this run have been translated into
CLOS objects. The schedule is displayed on the screen
by the user interface, and the user may then begin to
ask questions about the schedule by choosing questions
from the interaction menu. To ask a question such as
““Why was lot N88-99 scheduled?,”’” the user selects
the option *‘Why was lot scheduled?”’ and is then
prompted to fill in the lot number. An internal form
of the complete query is then passed to the query han-
dler for further processing.

The query handler performs several functions. First,
it checks to see whether the question is appropriate.
That is, when the question is of the form **Why facr?,”’
the query handler first checks to make sure that fact
is true in its current model of the world state. For
example, if the user asks ““Why was lot NN-MM
scheduled?,”” the system checks the current schedule
to make sure that this lot is indeed on the furnace
schedule. If it is not, the system points out the user’s
mistake and asks for further input, if desired. Similarly,
when the question is of the form **“Why not fact?,”’
the query handler checks to see that the fact in question
is indeed not true, and provides the appropriate feed-
back to the user if this is not the case.

If the user’s question is appropriate, the query han-
dler forms a communicative goal and passes this to
the text planner and the significance finder. Communi-
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cative goals represent the speaker’s intentions to affect
the knowledge or goals of the hearer. They are denoted
as states, such as the state in which the hearer knows
why a particular lot has been scheduled. For example,
if the user asked the question ‘“Why is lot N88-99
scheduled?,”” the query handler would form the goal
(KNOW-WHY HEARER (IN-SCHEDULE N88-99)).

Before the text planner begins the task of forming
an explanation plan to achieve the communicative goal,
several preprocessing steps must be done. First, the sig-
nificance finder must determine why the bottleneck dy-
namics program has (has not) chosen the lot in question,
which amounts to determining which factors of the bene-
fit—cost ratio make this lot more (less) ‘‘important” or
less (more) costly than an appropriate ‘‘peer group’” of
lots on the furnace queue. We discuss the significance
finder in more detail below. The output of the significance
finder is a list of nodes of the bottleneck dynamics struc-
ture that correspond to significant variables.

Next, the translator attempts to find the human sched-
uler’s equivalent of the bottleneck dynamics concepts cor-
responding to each ‘‘significant’” variable, by matching
across the hierarchies. Because the two structures are not
isomorphic, not every ‘‘significant’’ concept from the
mathematical system will be mapped into the human
scheduler’s world. This is an inevitable result of the prem-
ise of QEX that the scheduler does not understand the
theory or mechanics of the bottleneck dynamics system,
and so not everything in one world can be explained in
the other.' The output of this phase of processing is a list
of nodes from the human scheduler’s structure, which
form a knowledge pool that is used by the text planner in
constructing the explanation.”

Once ‘‘significant’” variables have been determined
and a relevant knowledge pool has been created, the
text planner can begin synthesizing the text of the ex-
planation. It does this via a simple decomposition plan-
ning mechanism based on the planner of Moore and
Paris (1993). When a goal is posted, the planner
searches its library of explanation operators looking for
candidates capable of achieving the goal. In general,
several candidate operators may be applicable, and the
planner employs a set of selection heuristics to deter-
mine which strategy is most appropriate in the current
situation. These selection heuristics take into account
information about the user type and the conversation
that has occurred so far (as recorded in the dialogue

" In the present implementation, significant variables that cannot
be mapped into the scheduler’s world are ignored; if they can be
decomposed into various factors, and some or all of those factors
are translatable, then they are communicated, at some point, to the
user.

* We could also generate explanations for a user fully conversant
with bottleneck dynamics, by simply skipping the translation step
and handing the text planner the original bottleneck dynamics nodes.
We plan to add different types of users in future versions of QEX.
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history). The selection heuristics also consider the
specificity of the explanation strategy employed by
each operation, the number of constraints on the opera-
tor, and the number of actions in its decomposition.
Once a strategy is selected, it may in turn post subgoals
for the planner to refine. Planning continues in this
fashion until all goals are refined into speech acts, such
as ASSERT and RECOMMEND.

As the system plans explanations, it records the goal
structure of the response being produced. The result is
a text plan that explicitly captures the intentional and
rhetorical elements of the text it produces. Text plans
are recorded in the dialogue history, and then realized
to produce English text. To produce the actual text,
the system realizes each speech act, adding discourse
connectives based on the rhetorical relations that con-
nect subtrees in the text plan. In the current system,
speech acts are mapped directly into templates. Exam-
ples of the operators used by the text planner are given
in Section 7, and we work through a sample dialogue
with QEX in Section 8. The text is presented by the
user interface, and the user is again presented with the
menu of questions that may be asked.

If the user asks another question about the same lot,
QEX does not repeat its earlier explanation. Instead,
by comparing the current communicative goal to the
goals that appear in the dialogue history, it recognizes
that the user is asking about a lot that has already
been discussed. In this case, a new knowledge pool is
formed by progressing down through the nodes of the
human scheduler’s structure. This corresponds to fur-
ther decomposing the knowledge structures in the
model, thus placing more detailed knowledge in the
pool, and thus resulting in more detailed explanations.
The user can continue asking about a particular lot,
and the system will produce more detailed answers
until it reaches the leaf nodes of the structure being
traversed and has nothing more to say. Of course, there
are other ways to answer follow-up questions besides
providing more detail about what has already been
said; a more sophisticated type of follow-up strategy
is planned for a future version of QEX.

In addition, if the user asks about a lot that is similar
(i.e., one with some of the same attributes) as a lot
that has previously been discussed, QEX points out
the similarity to the previous lot, and provides more
information at the user’s discretion. Again, QEX
probes the dialogue history to determine which lots
it has previously discussed and in what context (i.e.,
explaining why a lot was or was not scheduled).

In the sections that follow, we describe the knowl-
edge structures and processing modules of QEX in
more detail.

4. QEX KNOWLEDGE STRUCTURES

4.1. Human Scheduler’s Structure

Figure 2 is a simplified picture of the hierarchical
representation of the model of the human scheduler’s
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approach to choosing lots for the furnace. It is based
on the knowledge acquisition described above. Ide-
ally, this model might be constructed from a planner
or rule-based system that constructs the model from a
set of operators/rules encoding the human scheduler’s
approach to solving the scheduling problem. How-
ever, for the purposes of this research, it has been
hand coded.

As shown in Figure 2, the human scheduler thinks
in terms of satisfying job and machine requirements
by manipulating queues. The scheduler has three main
objectives: making sure that jobs are finished on time
(minimize lateness costs), trying to keep the factory
floor balanced and prevent excessive idleness on ma-
chines (minimize processing costs), and keeping the
work-in-process within acceptable limits (minimize in-
ventory costs). Each of these objectives can be decom-
posed, in turn, into a number of subgoals, and so on,
down to leaf nodes that represent the scheduler’s con-
cerns with individual attributes of lots and machines
(such as due date, processing time, number of lots on
queue, etc.).

The nodes are represented as CLOS objects. As
shown in Figure 3, each node consists of a name, a goal
(representing the scheduler’s objective), information
about its level in the model, pointers to the knowledge
structures that contain information about the current
shop status (processing times, due dates, queue lengths,
etc.), and pointers to its parent, sibling and children
nodes. The goal is a statement of the scheduler’s objec-
tive, which is used by the translation module (discussed
in more detail below). The associated variable is an
optional slot, which points to a CLOS object containing
a numerical value associated with this node. For in-
stance, the objective of the node shown in Figure 3,
*‘consider remaining time,”’ is associated with the no-
tion of ‘‘lead-time,”” that is, the time that this lot will
take to finish its processing in the shop. As we will
see in the examples below, this pointer enables QEX
to include specific numbers in its explanations when
they are part of the scheduler’s conceptual world. Not
all variables used by the bottleneck dynamics program
will be associated with a node on the scheduler’s
model; for the most part, they are decomposed into
variables that can be translated.

4.2, Bottleneck Dynamics Structure

Figure 4 is a simplified picture of the hierarchical rep-
resentation of the bottleneck dynamics scheduling sys-
tem, as implemented in the FORTRAN program. This
structure was created using three sources: the benefit—
cost ratio itself (and its decomposition into primitive
values), its implementation in the FORTRAN program,
and interviews with Thomas E. Morton and David W.
Pentico, the developer of the theory and the specific
implementation, respectively. The three highest-level
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FIGURE 2. Hierarchical structure of the human expert’s approach to scheduling.

nodes represent the overall objective of helping the
firm to maximize its profit; the general objective of
the scheduling system, which will minimize costs by
scheduling efficiently; and the specific objective of this
particular implementation (the FORTRAN program),
which minimizes a combination of weighted flowtime
and weighted tardiness.

The next node represents the benefit—cost ratio it-
self. Each subsequent level of nodes represents a stage
in the decomposition of this ratio. It is first decomposed
into the numerator (representing the benefit of schedul-
ing a particular job at a particular point in time) and

name: hs-node-6.4
goal: consider-remaining-time
level: 6

associated variable: lot-lead-time
parent-node: hs-node-5.3

sibling-nodes: (hs-node-6.3)
children-nodes: (hs-node-7.1 hs-node-7.2)

FIGURE 3. Sample node from the human scheduler’s model.

the denominator (representing the cost of scheduling
this job at this particular time), which are in turn de-
composed into their factors, which become the next
generation of nodes. For instance, the numerator is the
product of job weight (that is, the importance of the
job) and a slack factor. This decomposition is neces-
sary because the human scheduler does not share the
concept of ‘‘benefit—cost ratio’” (in the sense that it is
being used by the bottleneck dynamics system), and
so it must be broken down into components that this
user can understand.

Consider the node from the bottleneck dynamics
model with the goal ‘‘consider remaining time’’ in
Figure 5. As for the scheduler’s node discussed above,
the variable associated with this node is also ‘‘lot-lead-
time’’. The goal of this node corresponds to the goal
of the scheduler’s node in Figure 3. Thus, when the
associated variable ‘‘lot-lead-time’” is found to be sig-
nificant, bds-node-7.2 will be placed on a list, and
eventually ‘‘translated’’ by matching it with hs-node-
6.4, which has a corresponding goal. Note that, al-
though the goals (and in this case, the associated vari-
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FIGURE 4. Hierarchical structure of the bottleneck dynamics approach to scheduling.

ables) correspond, these two nodes are in different
places in their respective models; both are children of
the parent node with the goal ‘‘schedule lots [that are]
close [to their] due dates’” and both have as their chil-
dren nodes with the goals ‘‘consider remaining waiting
time’’ and ‘‘consider remaining processing time.’’
However, for the bottleneck dynamics system, these

name: bds-node-7.2
goal: consider-remaining-time
level: 7

associated variable: 1lot-lead-time
parent-node: bds-node-6.2

sibling-nodes: (bds-node-7.1)
children-nodes: (bds-node-8.1, bds-node-8.2)

FIGURE 5. Sample node from the bottleneck dynamics
model.

children are leaf nodes. The human scheduler’s struc-
ture continues to branch, with an additional child node
with the goal ‘‘consider processing time on each ma-
chine’” (this is actually a number of children, one for
each machine, represented as one node in this graphical
depiction). The leaf nodes that consider machine pro-
cessing time for bottleneck dynamics, on the other
hand, are in a completely different place in that struc-
ture. It is this lack of isomorphism that requires the
creation of two separate models, and necessitates trans-
lation between them.

4.3. Factory Floor Domain Knowledge

This part of the knowledge base consists of CLOS
objects representing lots and machine resources. These
data structures are produced by the FORTRAN pro-
gram that implements the bottleneck dynamics solution
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to the scheduling problem. Each lot on the furnace
queue is set to an object that contains attributes like
the following: its name (as known to the scheduler);
pass; product; urgency (the numerical coefficient cor-
responding to the ‘‘importance’” of the lot); due date;
routing through the shop (the setup® numbers of re-
sources and groups of resources); the benefit—cost ratio
calculated at the time that the furnace schedule was
assembled; its lead-time (the time it still has to process
in the shop); and the price of each resource on which
it still must process. QEX uses these attributes for three
purposes: to determine significant variables associated
with the lot, to ascertain whether it is similar (i.e.,
shares some attributes) with other lots that the sched-
uler may be interested in, and to identify it to the
scheduler in terms of its product, pass, current size,
and so on.

The representation of the factory floor also contains
information that does not change, such as attributes of
particular products. For instance, the attributes of the
product ‘‘N88’’ include the size of its final diameter,
its size in each pass, and whether or not it belongs to
any specialized product line. This information may be
included in an explanation in order to identify a partic-
ular ‘“N88’” lot, as well as to justify its place on the
furnace schedule.

5. DETERMINATION OF SIGNIFICANT
VARIABLES

In order to determine why a lot was scheduled by the
bottleneck dynamics program, we need to isolate the
factor or factors that made its benefit—cost ratio sig-
nificantly higher than those of its peers. This might be
one factor, for instance, a due date that is very close,
or a combination of factors such as due date, remaining
processing time, and estimated queue length on a future
resource. It is important that we determine this signifi-
cance in context, that is, in the context of the benefit—
cost ratio itself, since it 15 precisely by such a combina-
tion of factors that the bottleneck dynamics system
schedules jobs. QEX creates two lists of significant
factors, which are actually lists of the nodes of the
structure associated with each of these values.

In order to do this, we use an adaptation of the
method developed by Kosy and Wise (1984) and used
by Roth, Mattis, and Mesnard (1991). Our method of
computing significance is as follows. Consider the set
of values V = v, vy, - - - v,, where each v; is one of
n factors in the decomposition of the benefit—cost ratio.
In order to determine the significance of each individ-

* **Machine setup’’ is the physical status of the machine when
it has been prepared to process a certain product; for example, a
pilger machine would be set up by preparing it to produce tubes of
specified inner and outer diameter.
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ual factor, we measure the effect of the value of that
factor for the lot in question in the context of the
corresponding average value of its peer group.* So, if
the set of average values (that is, the » factors repre-
senting the average values of the peer group) is repre-
sented by A = {a,, a;, * -+ a,} and the set of values
for the lot in question is represented by B = {b,, b,
- -+ b,}, we calculate the “‘effect”” of factor b; by
computing a benefit—cost ratio R; using the factors in
the set A’ = {a), a5, ..., a1, by, a;y, * - - a,), and
comparing it to the benefit—cost ratio R, computed
using just the average factors in A. That is, we substi-
tute, one by one, the values of the *‘lot-factors’ into
the calculation, to see which charactenstics of an indi-
vidual lot make a ‘“‘significant’” difference. To deter-
mine which differences are significant in this sense,
we compare the absolute value of the normalized dif-
ference A; = (R, — R)/(R, — R,) (where R, is the
benefit—-cost ratio computed using the original set of
values B described above) to a parameter which is
determined empirically (for the example given below,
we used 0.04). For each R; for which the absolute
value of the normalized difference is larger than the
parameter, the corresponding value b; is recorded as
significant for inclusion in explanation.

Both Kosy and Wise (1984) and Roth, Mattis, and
Mesnard (1991) go one step further, and try different
ways of determining which combinations of factors are
significant. For example, the A, by itself might not be
large enough to call factor b, significant, but adding to
it A, might push it past the threshold, and so we could
then say that b, and b, are significant in combination.
Because we do not consider all of the possible factors
b; in our explanation (some might be untranslatable
into the scheduler’s world), it is not meaningful to
apply this procedure in a straightforward way to our
problem. Developing a way to account for the effects
of combinations of factors in a system like QEX is an
area for future research.

6. TRANSLATING BETWEEN TWO
WORLDS

Once it has determined which variables are significant
for explanation, QEX must find the corresponding con-
cepts in the human scheduler’s model. To do this, it
processes the lists of significant nodes (that is, nodes
that are associated with significant variables) that were
produced by the significance finder, and tries to match
the goal of each such node with the goal of a node on

* By “‘peer group’’ we mean here the set of lots that was below
the lot in question in the furnace queue, if the scheduler is asking
why the lot was on the schedule, and the set of lots that was above
this lot on the queue, if the scheduler is asking, conversely, why a
lot was not scheduled.
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name: justify-scheduling-regular-lot
effect: (KNOW-WHY hearer (in-schedule ?lot))
constraints: (AND (in-schedule 7lot)

(priority 7lot 7lot-priority)

(due date 7lot 7lot-due-date)

(KNFC 7lot mnil)

(thimble 7lot nil)

(user type scheduler))
preconditions: (AND (KNOW hearer (in-schedule ?lot))

(KNOW hearer (identification ?7lot)))

decomposition: (KNOW hearer (significant-factors 7lot))

FIGURE 6. Sample Operator 1.

the human scheduler’s structure. There are two lists of
significant bottleneck dynamics nodes, corresponding
to variables that indicate significance for and against
scheduling (for instance, a due date that is, on average,
far away is a reason against scheduling; an anticipated
queue of less than average length is a reason for sched-
uling). These are converted into two new lists, con-
taining the corresponding human scheduler’s nodes.
This is done by taking the goal of each bottleneck
dynamics node, and scanning the objects representing
human scheduler’s nodes for a corresponding goal. If
no correspondence is found, then the concept repre-
sented by this node cannot be directly explained to
the scheduler. However, chances are that it will be
represented by some combination of children nodes,
because most leaf nodes (which represent ‘‘primi-
tives”” such as processing time, queue length, etc.) rep-
resent concepts that are shared by the scheduler. The
children nodes will then be the basis for the explana-
tion of this concept that is produced for the human
scheduler.

These two lists are used to generate an explanation
in the following manner. Each of these nodes has an
attribute indicating what level it is in the hierarchical
structure. When the user first asks about a particular
lot, the selection heuristics prefer an operator that ac-
cesses ‘‘primary nodes’’ (that is, the node or group of
nodes that are highest in the hierarchy). These are used
to generate the first explanatory text. Subsequent que-
ries about the same lot motivate the choice of an opera-
tor that accesses ‘‘children nodes,”” and so on, until
leaf nodes have been reached, and QEX has no more
information on this particular subject.

7. THE TEXT PLANNER

QEX’s text planner is based on prior work in text
planning (e.g., Cawsey, 1993; Moore, 1994; Moore &
Paris, 1993). Like Moore’s (1994) system, QEX keeps
track of the context of the interaction with the user, so
that it can answer follow-up questions in a coherent
and nonrepetitive manner. It does this by using a dia-
logue history, that is, by keeping track of what has
already been asked and answered. The planner works
by posting communicative goals (e.g., ‘‘achieve the
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state in which the user knows why a lot was sched-
uled’’), and refining them until it reaches the level of
speech acts (e.g., ““tell the user the primary reasons
for scheduling this lot”). A library of explanation oper-
ators used by the planner embodies the mapping be-
tween communicative goals and speech acts. When
there are multiple operators that are capable of achiev-
ing a particular goal, they are ranked by a set of selec-
tion heuristics, and the highest ranking operator is
chosen.

Figure 6 is an example of a plan operator that might
be chosen when the user asks why a certain lot was
scheduled. A goal 1s posted to ‘‘make the hearer know
why a certain lot was scheduled,”” i.e., (KNOW-WHY
hearer (in-schedule ?lot)). This matches the effect of
this operator, so the text planner next tries to satisfy
the constraints by checking the facts about the lot itself
(its priority, due date, etc.) and the user type. Con-
straints specify when an operator is applicable, but
they also specify the type of knowledge to be included
in an explanation, that is, the process of satisfying
constraints causes the planner to find information that
will be included in the text. For example, to satisfy
the constraint (priority ?lot ?lot-priority) in the above
operator, the planner must find a binding for the vari-
able ?lot-priority. If there is a set of variable bindings
satisfying the constraints, then this operator is put on
the candidate list. If it is chosen by the selection heuris-
tics, the operator 1s added to the plan tree, and the
subgoals in its precondition and decomposition fields
are placed on the agenda of goal to be satisfied.

Figure 7 shows an operator that can be used to
satisfy the goal (KNOW hearer (identification ?lot)),
which is one of the preconditions of the operator in
Figure 6. The operator in Figure 7 has no precondi-
tions, and the decomposition is a speech act that will
be used, in conjunction with a template, to generate
the explanatory text.

In QEX, follow-up questions consist of queries for
more detailed information about why a lot was (or was
not) scheduled. The system keeps track of what has
already been explained, by keeping a stack of pre-

name:
effect:
constraints:

identify~lot
(KNOW hearer (identification 7lot))
(AND (pame 7lot ?7lot-name)
(pass Tlot ?lot-pass)
(product ?lot 7lot-product)
(final-0D ?lot ?7lot-final-0D)
(size 7lot ?lot-size)
(user type scheduler))
preconditions: nil
decomposition: (Assert speaker hearer (LOT-IDENT
?lot-nanme
?lot-pass
?lot-product
?lot-final-0D
?lot-size))

FIGURE 7. Sample Operator 2.
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FURNACE SCHEDULE:

518-75
518-74
N88-99
518-82
518-97
568-49
568-54
FIGURE 8. Sample furnace schedule.

viously refined communicative goals and checking it
whenever the user asks a question. In general, QEX
will not choose the same operator to achieve a commu-
nicative goal twice; in effect the list of candidate opera-
tors is progressively shortened each time the same
question is asked. The exception to this is those opera-
tors that decompose ‘‘reasons’’ by looking at succes-
sively lower levels of nodes of the human scheduler’s
structure; these operators may be reused since the ex-
planation will differ because the knowledge pool that
is used to satisty constraints will contain a different
set of nodes as the system moves down in the structure
it is explaining. In this way, QEX may follow up an
explanation referring to ‘‘remaining time,”” for exam-
ple, with one that refers to the components of that
variable, ‘‘remaining waiting time’’ and ‘‘remaining
processing time’’ (see Figure 2).

In order to make use of context in the case of
similarities among lots that are the subject of queries,
QEX uses an adaptation of the approach of Moore
(1993). It does this by keeping track of which individ-
ual lots have been asked about, and comparing certain
attributes (product name, stage of processing, and due
date) of each of those with the attributes of the lot
that is the current focus of explanation. *‘Similar’
lots are those of the same product that are in the same
stage of processing; ‘‘equivalent’’ lots are similar lots
that have the same due date. Operators that refer to
a prior explanation of a similar or equivalent lot are
preferred by the selection heuristics. The sample in-
teraction with QEX shown in the Section 8 will illus-
trate this functionality.

8. SAMPLE EXPLANATION

The following example is taken from an actual run of
the bottleneck dynamics system, and the explanations
generated by queries to QEX. The scheduling program
has been run to suggest to the scheduler what should
be loaded into the next furnace run. The scheduler is
presented with the list of recommended lots (Figure
8), as well as a list of all the lots available on the
furnace queue (Figure 9). Now the interactive session
begins. In the figures showing sample dialogues, the
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system’s utterances are depicted in typewriter font,
while the user’s utterances appear in italics.

As shown in Figure 10, QEX begins the session by
asking the user to specify a user type. This is because
the system is potentially capable of tailoring answers to
different user types (e.g., scheduler, theorist, manager).
Tailoring is accomplished by including the user type
as a constraint on certain operators used by the planner.
One of the heuristics that chooses among possible al-
ternative operators gives preference to operators that
cater to the current user type. This will also prevent
the system from generating inappropriate explanations
for a specific user (for instance, schedulers will not be
confronted with an explanation that refers to machine
prices, which are not in their conceptual world).

Next, the user is prompted for a query by presenta-
tion of a menu of questions that can be asked at this
point, The scheduler first asks why one of the lots,
N88-99, was placed on the furnace schedule.

Turn 5 of the sample dialogue in Figure 10 provides
an example of the strategy QEX uses to explain why
a lot was scheduled. It first identifies the lot by its final
outer diameter (0.357), its pass (second) and its current
size (1.00 inch). This is how the scheduler thinks about,
and refers to, lots on the factory floor. QEX finds this
information about lot N88-99 in its data structure rep-
resenting the status of the factory floor. The numerical
values are slots in the CLLOS object that is instantiated
with the attributes about N88-99, which are in turn
bound to variables that the text planner uses in generat-
ing explanations.

The next two sentences present the “‘highest level”’
reasons (in terms of the conceptual hierarchy depicted
in Figure 2) for and against scheduling this particular

FURNACE QUEUE:

518-75
518-74
N88-99
518-82
$18-97
568-49
S68-54
S518-95
518-96
568-50
N88-15
K21-24
K21-256
W73-16
W73-17
W73-18

FIGURE 9. Sample furnace queue.
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Welcome to QEX, The Quantitative EXplainer. 1]

Piease enter your user type.

scheduler

What would you like to ask?

Why was lot N88-99 scheduled? (4
Lot N88-99 is a 0.357 second-pass lot of size 1.3. In [5]
comparison with lots on the furnace queue which were not

scheduled, this lot was chosen for the following reasons.

Although, in comparison with other lots, its due date is pot

really that close {137 hours), it was scheduled because there is

a chance that it won’t finish processing in time to meet its due

date.

Tell me more about lot N88-99. 6]
You wanted to know more about why this lot was scheduled. It ul
was placed on the schedule because, in comparison with other

lots, it will take a relatively long time to get through the

shop (104 hours).

Tell me more about lot N88-99. (8]
You vanted to know more about why this lot was scheduled. It 9]
was placed on the schedule because, in comparison with other

lots, its total processing time on remaining machines is pretty

long (82 hours), and alsoc because there are a large number of

third-pass pilgers set up for this product (3 pilgers).

Tell me more about lot N88-99. {10]
You wanted to know more about why this lot was scheduled. [11]

Sorry, I’'ve already told you everything I know about this

subject.

FIGURE 10. Sample dialogue with QEX.

lot, as derived from an analysis of the output of the
FORTRAN program, as described above.

The reason against scheduling, the fact that the due
date of this lot is not that close, relatively speaking,
comes from the fact that the variable ‘‘lot due date”
turns out to be significant. That is, when it was com-
pared to the due dates of the lots below it on the furnace
queue, its effect on the benefit—cost ratio was signifi-
cant, in the direction of not scheduling. In other words,
the due date of this lot was relatively farther away,
as measured by the algorithm described above. The
bottleneck dynamics node with the goal ‘‘consider due
dates’” was placed on the list of significant nodes, and
subsequently ‘‘translated’” into the human scheduler’s
node with the same goal, since the human scheduler
also thinks in terms of due dates when planning a
furnace load. The due date itself (expressed in hours
from the time of the furnace load) is also given; this
comes from the associated variable of the human
scheduler’s node *‘‘consider due dates.”

The reason for scheduling this lot is ‘‘because there
1s a chance that it won’t finish processing in time to
meet its due date.”” This was arrived at in the following
manner. The variable ‘‘lot slack’ was found to be
significant. This corresponds to the bottleneck dynam-
ics node with the goal ‘‘schedule lots close to due
dates,”” which is matched in turn with the human
scheduler’s node with the same goal. In this case, al-
though the goals match, enabling us to translate the
concept from one world to another, the number itself
(which embodies a mathematical relationship between

due date and expected time to completion) has no
meaning to the human scheduler, so it is not presented
in the explanation.

Why do we give reasons counter to the decision
reached by the mathematical program (here, that
means reasons against scheduling this lot)? Because
if those reasons are important enough, the scheduler
will certainly be aware of them, and in fact will proba-
bly have such reasons in mind when posing a question
to QEX. For instance, the question in turn 4 of the
sample dialogue might have been asked because the
scheduler looked at the suggested furnace schedule
and thought, ‘‘But N88-99 isn’t due for a while. Why
schedule it now?”” It is, therefore, a good rhetorical
strategy on the part of the explanation system to antic-
ipate such objections by admitting up front that there
are factors that apparently argue against the decision
of the bottleneck dynamics system. However, QEX
treats counter-arguments differently from reasons that
support the program’s decision, in that it prunes away
all but the highest level ones. That is, when sched-
uler’s nodes are found that correspond to reasons
against the action taken by the scheduling program,
only the top few levels of these counter-arguments
will be used in generating explanations. In contrast,
when presenting reasons that support a decision, all
nodes are used, down to the lowest level generated.
The idea is that it is only worthwhile to acknowledge
the most general objections.

The explanation in turn 5 communicates the high-
est level reasons for and against scheduling this lot,
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corresponding to the highest level scheduler’'s node
that was matched from ‘‘significant’” bottleneck dy-
namics nodes. In this case, ‘It was scheduled because
there is a chance that it won’t finish processing in
time to meet its due date’’ is the text template corre-
sponding to the scheduler’s node with the goal
““schedule lots close to due dates.”” Thus the bottle-
neck dynamics concept of ‘‘slack’ has been trans-
lated into the user’s language.

As we have already mentioned, the clause beginning
with “‘although,”’ represents a reason against schedul-
ing this lot. It turns out that its due date is ‘‘signifi-
cantly’’ further away than that of its peers. However,
in this case the favorable effect of another significant
factor (slack factor) overrides the negative effect of
due date, and so the lot was scheduled anyway. The
system includes in the explanation a relevant numerical
value, such as due date, when that value itself is a
viable concept in the user’s world (slack factor, in
contrast, is not, so no number is given).

Next, the scheduler wants to know more details
about why this lot was scheduled. The scheduler asks
*“Tell me more about lot N88-99°” (see turn 6 in Figure
10). In effect, the same question is asked again (the
same goal is posted), but the resulting explanation is
different. The response of QEX is shown in turn 7 in
Figure 10.

“It will take a relatively long time to get through
the shop™ is the text template corresponding to the
numerical value representing lead time (the anticipated
amount of time that the lot will take to complete its
processing). That is, this lot has a lead time that is
significantly larger than that of its peers, and so this
is another reason that its benefit—cost ratio is relatively
larger. Lead time is a component of slack factor (as
expressed by their hierarchical relationship in Figure
2 where the node with the goal ‘‘consider remaining
time’’ is a child of the node with the goal ‘‘schedule
lots close to due dates’’), and so we see how QEX
gives additional information by decomposing variables
into their component parts.

In answer to the next follow-up question, QEX gives
additional information (see turn 9 in Figure 10).° This
time QEX goes ‘‘down’’ once more, decomposing lead
time into its components of waiting time and pro-
cessing time, and finding that the latter is significant
(the corresponding scheduler’s nodes are those labeled
‘‘consider remaining processing time’” and ‘‘consider
remaining waiting time”’ in Figure 2). The second part
of the explanation represents the scheduler’s motiva-
tion to keep machines busy (especially the pilgers, or
extrusion machines, which are relatively expensive to

*In the present implementation, every response to a request for
more information is introduced in the same way: this will be further
refined to provide more textual variety in the next version.
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run and are usually quite busy in the last stages of
processing). Now we are in the branch of the human
scheduler’s structure that descends from the node la-
beled ‘‘minimize processing costs’” in Figure 2. ‘A
large number of third-pass pilgers set up for this prod-
uct”’ (corresponding to a child of the node labeled
‘‘consider number of machines’” in the same figure)
indicates to the scheduler that there had better be a
steady stream of N88 lots to keep these machines busy.
The bottleneck dynamics system also considers the
number of machines set up, as part of the equation that
computes machine prices; since machines are aggre-
gated into groups of resources, the price for each group
is divided by the number of machines in that group.
A large number of machines means a lower price, that
is, a lower denominator, which in turn means that the
overall benefit—cost ratio of a given lot may be higher
as a result. Telling the scheduler about ratios, denomi-
nators, and machine prices, however, would not be
convincing, so QEX finds a corresponding concept and
uses it for explanation. Turns 6—9 of Figure 10 show
how QEX decomposes a concept that cannot be trans-
lated, finding the significant variables among its fac-
tors, and using them to generate explanation.

The scheduler may continue to ask for more detail,
and as long as there are nodes on the list of significant
nodes, the system will produce more and more detail.
Eventually, of course, it will run out of things to say,
as shown in turn 11 in Figure 10.

The sample dialogue continues in Figure 11, with
the scheduler asking about a different lot on the
schedule, S18-74. The explanation (turn 13 in Figure
11) is prompted again by the significance of the vari-
able ‘‘lot slack.”

The next query shows how QEX recognizes ‘‘simi-
lar’” entities, and tailors its explanations to that context.
In turn 14 of Figure 11, the user asks about lot S18-
96, which is not in the schedule. The answer in turn
15 pinpoints the differences between the two lots, and
it is in this context that QEX explains why S18-96 was
not scheduled. They are both the same product and
pass (which is the definition of ‘‘equivalent’ lot in
this domain). The variable representing slack is also
significant for this lot. But the difference between these
two lots is that while slack is a reason for scheduling
the first, it is a reason against scheduling the second.
QEX points this out explicitly saying ‘‘Unlike lot S18-
74 . . . " Of course this is related to the difference
in their due dates, which QEX points out.

If two lots are exactly equivalent (including their
due date), and one is scheduled while the other is not,
the user will receive an answer like the one shown in
turn 17 of Figure 11. In order to give this answer, QEX
must know: (1) that the two lots are similar; (2) that
one has already been asked about; and (3) that one has
been scheduled and the other hasn’t. This is accom-
plished by the use of a dialogue history, as described
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Why was lot S18-7{ scheduled?

Lot 518-74 is a 0.368 third-pass lot of size 0.57. It is a KNFC
lot which, in comparison with other lots on the furnace queue
vhich were not scheduled, was chosen for the following reasons.

(12
[13]
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There is a chance that it won’t finish processing in time to

meet its due date.
Why was lot S18-96 not scheduled?

(14]

Lot S18-96 is a 0.368 third-pass lot of size 0.57. It is a KNFC [18]
lot which, in comparison with other lots on the furnace queue

vhich were scheduled, was not chosen for the following reasoms.

Unlike lot S18-74, it will probably be able to finish its

processing in time to meet its due date.

Why was lot 518-95 not scheduled?

[16]

This lot is equivalent to a lot that you have already asked [17]
about, 818-74. You may schedule this lot instead of S$18-74 if

you wish.

Why was lot 568-49 not scheduled?

(18]

But that lot is on the current schedule! [19]
Why was lot W78-21 scheduled? [20]
But that lot is not on the current schedule! [21]

FIGURE 11. Sample dialogue with QEX continued.

above, as well as by using data structures that enable
QEX to look up various facts about the factory floor.

The answers in turns 19 and 21 of Figure 11 show
how QEX does not allow the user to “‘fool’” it by
asking for an explanation of something that is not true.

9. CONCLUSIONS AND FUTURE
DIRECTIONS

QEX attempts to demonstrate that automated explana-
tion can bridge the gap between quantitative systems
and uninitiated users. It builds upon previous work in
explanation planning and quantitative explanation, and
adds the additional capability of translating between
two conceptually varying worlds. Within certain con-
straints (with regard to the similarities and differences
between those worlds), we believe that this approach
to explanation can be applied generally to quantitative
advice-giving systems that are meant to be used by
those who are not well-versed in the formal problem
solving models on which those systems are based. We
plan to apply our explanation methodology to other
such quantitative systems.

The development of the QEX prototype has raised
many issues and avenues of future research. We plan
to enhance the system itself to handle a broader range
of follow-up questions. The interface will be extended
to permit the user to “‘point’’ with the mouse (Moore &
Swartout, 1990), highlighting words or phrases that can
be further elucidated. Since the bottleneck dynamics
program has been explicitly represented, another en-
hancement would be to enable the user to ask questions
about the workings of that program (which would as-
sume a user who is more interested in the formal model
than the “‘uninitiated’’ one that we have posited so far).

Additional user types, which would require different
representations and explanation strategies, will also be
added. For example, a manager or floor supervisor
might require a different set of concepts for translation;
a user who was well-versed in the theory of bottleneck
dynamics would not require that its concepts be trans-
lated at all. This enhancement will also help us to
evaluate the explanation system.

The method of testing for significant variables might
also be refined. We have already mentioned the fact
that we do not now consider combinations of factors,
and plan to investigate ways to incorporate that into our
significance finding strategies. Another area of future
inquiry is to consider different ways of comparing fo-
cus variables and their ‘‘peer groups.”” We now use
simple averaging; for example, we compare the due
date of the lot being asked about to the average of the
due dates of the lots above or below it on the furnace
queue. We plan to compare our current method with
different statistical methods that consider variance in
the context of determining significance.

Another extension to the present system would be
to provide the capability of dynamically generating
each user’s problem solving approach, by recon-
structing backwards from the solution provided by the
mathematical system, as does REX (Wick & Thomp-
son, 1992). This would make the explanation system
more robust, because it would have a working ‘‘under-
standing’’ of how to solve the problem at hand, and
would allow the scheduler’s model to discover addi-
tional evidence for the bottleneck dynamics system’s
results. In addition, such a system might be able to
resolve conflicts between differing solutions from two
different types of problem solvers. These conflicting
solutions might come from a mathematically-based
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system and one developed from studying human exper-
tise, or even from two different mathematical systems
(for example, one based on a physical model and one
based on statistics).

In terms of evaluating the present implementation
of QEX, a project is now under way to test the ro-
bustness of the program over different types of sched-
uling situations, as well as different settings of the
bottleneck dynamics program. We are using actual fac-
tory data from several different historical days, and
perturbing it to perform sensitivity analysis on factors
such as different levels of shop loading (how busy it
i), various relationships between processing times on
machines (to examine the relative strength of the bot-
tleneck at the furnace), and different spreads among
the due dates of the lots to be processed. We will also
change the relationship between the two parts of the
objective function (flowtime and tardiness). Generating
explanations from the output produced by these pertur-
bations will show how QEX reflects differing realities
on the factory floor and different parameterizations of
the bottleneck dynamics program.
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