Skip to main content
Article
Estimation of Optimal Biomass Removal Rate Based on Tolerable Soil Erosion for Single-Pass Crop Grain and Biomass Harvesting System
Transactions of the ASABE
  • Manoj Karkee, Washington State University
  • Robert Paul McNaull, Iowa State University
  • Stuart J. Birrell, Iowa State University
  • Brian L. Steward, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
1-1-2012
Abstract

As the demand for biomass feedstocks grows, it is likely that agricultural residue will be removed in a way that compromises soil sustainability due to increased soil erosion, depletion of organic matter, and deterioration of soil physical characteristics. Since soil erosion from agricultural fields depends on several factors including soil type, field terrain, and cropping practices, the amount of biomass that can be removed while maintaining soil tilth varies substantially over space and time. The RUSLE2 soil erosion model, which takes into account these spatio-temporal variations, was used to estimate tolerable agricultural biomass removal rates at field scales for a single-pass crop grain and biomass harvesting system. Soil type, field topography, climate data, management practices, and conservation practices were stored in individual databases on a state or county basis. Geographic position of the field was used as a spatial key to access the databases to select site-specific information such as soil, topography, and management related parameters. These parameters along with actual grain yield were provided as inputs to the RUSLE2 model to calculate yearly soil loss per unit area of the field. An iterative technique was then used to determine site-specific tolerable biomass removal rates that keep the soil loss below the soil loss thresholds (T) of the field. The tolerable removal rates varied substantially with field terrain, crop management practices, and soil type. At a location in a field in Winnebago county, Iowa, with ~1% slope and conventional tillage practices, up to 98% of the 11 Mg ha-1 total above-ground biomass was available for collection with negligible soil loss. There was no biomass available to remove with conventional tillage practices on steep slopes, as in a field in Crawford county, Iowa, with a 12.6% slope. If no-till crop practices were adopted, up to 70% of the total above-ground biomass could be collected at the same location with 12.6% slope. In the case of a soybean-corn rotation with no-till practices, about 98% of total biomass was available for removal at the locations in the Winnebago field with low slopes, whereas 77% of total biomass was available at a location in the Crawford field with a 7.5% slope. Tolerable removal rates varied substantially over an agricultural field, which showed the importance of site-specific removal rate estimation. These removal rates can be useful in developing recommended rates for producers to use during a single-pass crop grain and biomass harvesting operation. However, this study only considered the soil erosion tolerance level in estimating biomass removal rates. Before providing the final recommendation to end users, further investigations will be necessary to study the potential effects of continuous biomass removal on organic matter content and other biophysical properties of the soil.

Comments

This article is from Transactions of the ASABE, 55, no. 1 (2012): 107–115.

Access
Open
Copyright Owner
American Society of Agricultural and Biological Engineers
Language
en
File Format
application/pdf
Citation Information
Manoj Karkee, Robert Paul McNaull, Stuart J. Birrell and Brian L. Steward. "Estimation of Optimal Biomass Removal Rate Based on Tolerable Soil Erosion for Single-Pass Crop Grain and Biomass Harvesting System" Transactions of the ASABE Vol. 55 Iss. 1 (2012) p. 107 - 115
Available at: http://works.bepress.com/stuart_birrell/29/