Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in Sedimentary Rock Rich in Organic Matter

Steven T. Petsch, University of Massachusetts - Amherst
P. Waldron
A. M Martini
K. Nüsslein

Available at: http://works.bepress.com/steven_petsch/5/
Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in Sedimentary Rock Rich in Organic Matter

Patricia J. Waldron, Steven T. Petsch, Anna M. Martini and Klaus Nüsslein

Published Ahead of Print 27 April 2007.

Updated information and services can be found at:
http://aem.asm.org/content/73/13/4171

These include:

REFERENCES
This article cites 56 articles, 24 of which can be accessed free at: http://aem.asm.org/content/73/13/4171#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more

CORRECTIONS
An erratum has been published regarding this article. To view this page, please click here

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in Sedimentary Rock Rich in Organic Matter

Patricia J. Waldron,† Steven T. Petsch,2* Anna M. Martini,3 and Klaus Nüsslein1

Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts 01003; Department of Geosciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003; and Department of Geology, Amherst College, Amherst, Massachusetts 01002

Received 1 December 2006/Accepted 17 April 2007

The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl− in a subsurface shale rich in CH4 derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH4-producing zone lacked electron acceptors such as O2, NO3−, Fe3+, or SO42−. Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl− concentrations above ~1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H2/CO2) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links betweenarchaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH4-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.

Subsurface sedimentary environments contain an estimated 1/10 to 1/3 of all living biomass on Earth, and the activity of subsurface microorganisms plays an important role in biogeochemical cycling of elements and the global carbon cycle (38, 51, 57). Study of the activity of organisms in deeply buried sedimentary rocks in particular helps inform our understanding of the persistence of isolated microbial communities over geologic time and the cumulative impact that long, sustained activity may have on geochemical signatures trapped in ancient rocks. In certain environments, subsurface biological activity may be directly linked with atmospheric and climate changes. Among these environments are sites where methanogenesis occurs in sedimentary basins, in which activity may be stimulated by changing surficial hydrologic cycle and release of CH4 may impact the atmospheric composition and the global climate. The Michigan Basin is a ~600-km-wide, 4-km-deep stratigraphic basin comprising sedimentary rocks ranging from 540 to 145 million years old. Within the rock formations of the basin is the ~380-million-year-old Antrim Shale, a fine-grained, laminated shale with high concentrations of organic carbon and pyrite. Intense natural gas production has been developed along the northern margin of the basin, where CH4 abundance is greatest; at present, over 10,000 gas- and water-producing wells have been installed in the Antrim Shale along a 50 km-wide north-south band extending across the entire Lower Peninsula of Michigan (Fig. 1).

Multiple lines of geochemical evidence suggest that there is or has been substantial biological activity within the Antrim Shale and also indicate that CH4 produced along the northern margin of the basin is primarily biological in origin (29, 30, 31, 34, 35). Pore waters collected from wells along the CH4-rich northern margin of the basin exhibit elevated alkalinity (20 to 60 meq liter−1) which is greater than the alkalinity that can be supported by dissolution of carbonate minerals; this suggests that there is a source of inorganic carbon derived from remineralization of organic matter (29, 30). Gas produced from the Antrim Shale is almost entirely lacking in higher-chain hydrocarbons such as ethane, propane, and butane, which are generated along with CH4 during thermal decomposition of organic matter-rich sedimentary rocks (29, 30, 34, 35). Stable isotope (D/H) ratios of Antrim Shale H2O and CH4 reflect isotopic fractionation induced during methanogenesis (29, 30), as do comparisons of δ13C ratios for coproduced CO2 and CH4 (31).

Antrim Shale pore waters exhibit a sharp salinity gradient
The methane-producing zone in the Antrim Shale covers the entire salinity range known to support methanogenesis, from freshwater to water containing 4,000 mM Cl\(^{-}\). Bacterial rRNA gene sequencing efforts for the Antrim Shale have shown that a variety of fermentative, syntrophic, and homoacetogenic bacteria inhabit the shale (32; M. L. Formolo, A. M. Martini, K. Nüsslein, J. Salacup, and S. T. Petsch, submitted for publication). These organisms are believed to convert bioavailable components of shale organic matter into substrates for methanogenesis, such as H\(_2\), CO\(_2\), acetate, and methanol. Because different methanogens require different substrates (acetate, H\(_2\), methanol, methylamines), salinity may indirectly control the diversity of organisms responsible for decomposition of shale organic matter and production of substrates necessary for methanogenesis. As the Antrim Shale represents a methane source that may prove to be critical for both ancient climate change and modern resource recovery, salinity constraints on methanogenesis are critical for understanding this and other accumulations of biogenic methane in sedimentary basins.

MATERIALS AND METHODS

Sample collection.

Eight wells that produce gas and water from the Antrim Shale were sampled in June 2005 along a north-south transect in northern Michigan, spanning a gradient from dilute waters in the north to highly saline waters in the south (Fig. 1). In all cases, waters were drawn from within the actively pumping well stream to avoid contact with the atmosphere. Samples of cellular material were collected at each well head by drawing well water into a sterile 60-ml disposable syringe and filtering it through a 0.22-\(\mu\)m Swinnex filter holder. Filters used for DNA extraction were frozen on dry ice, transported to the laboratory, and maintained at −80°C until they were processed. Parallel filters used for cell counting were fixed on site by flushing each filter with 5 ml of a solution of 4% paraformaldehyde in phosphate-buffered saline at pH 7.2, incubated at 4°C for 6 h, and then rinsed with 50 ml of a 1:1 ethanol/phosphate-buffered saline solution through the filter holder. The phosphate-buffered saline solution comprised 130 mM NaCl, 15 mM Na\(_2\)HPO\(_4\), and 5 mM NaH\(_2\)PO\(_4\), adjusted to pH 7.2. After rinsing, filter holders were filled with a sterile 1:1 ethanol/phosphate-buffered saline solution, capped, stored on dry ice, transported to the laboratory, and maintained at −30°C until analysis. Enrichment cultures were initiated on site by drawing well water from the actively pumping well stream and slowly dispensing it into prepared serum vials (see “Enrichment cultures” below). Replicate water samples for geochemical analysis were collected from each well head, filter sterilized with 0.22-\(\mu\)m nylon filters on site, and stored in 125-ml high-density polyethylene bottles at 4°C until analysis; samples used for cation analysis were acidified to pH 2 with HNO\(_3\), upon collection, while samples used for alkalinity, acetate, and anion analysis were not acidified. The temperature and pH of well waters were measured on site. Additional water samples were collected for most-probable-number (MPN) series analysis by completely filling gas-tight 250-ml polycarbonate terephthalactate glycol bottles with well water and shipping them at 4°C overnight to the laboratory. These bottles were transferred into an anaerobic chamber, and the contents were dispensed into serum vials capped with butyl rubber stoppers.

Enrichment cultures.

Medium for the enrichment of Antrim Shale microorganisms was developed to mimic the geochemistry of water collected from methane-producing Antrim Shale wells. The media consisted of a degassed basal salts solution containing CaCl\(_2\)·2H\(_2\)O (3.6 mM), MgCl\(_2\)·6H\(_2\)O (1.6 mM), Na\(_2\)HPO\(_4\) (0.73 mM), NaBr (0.23 mM), NaHCO\(_3\) (25 mM), trace vitamin and mineral solutions (DSMZ media 141 and 318, respectively) (http://www.dsmz.de/), and resazurin (1 mg/liter) and were buffered with 2-morpholinoethanesulfonic acid (10 mM) to pH 6.1. General enrichment media contained the following organic carbon sources: sodium acetate (10 mM), sodium formate (1 mM), trimethylamine (10 mM), methanol (50 mM), yeast extract (0.1%), and tryptic peptone (0.1%). Other than CO\(_2\), no external electron acceptors were supplied. Fifteen milliliters of medium was dispensed into 50-ml glass serum bottles, which were capped with butyl rubber stoppers. The medium was degassed by sparging with 80-20 N\(_2\)/CO\(_2\). Fifteen milliliters of medium was dispensed into 50-ml glass serum bottles, which were capped with butyl rubber stoppers. The medium was degassed by sparging with 80-20 N\(_2\)/CO\(_2\).
stoppers and autoclaved, and then the medium was reduced by addition of Na₂S·9H₂O and cysteine (0.03% each). The headspace was pressurized to 160 kPa with 80:20 H₂/CO₂ to approximate the measured pore water alkalinity. To determine the methane production and salinity tolerance of different communities along the salinity gradient, a suite of enrichments for fermentative and methanogenic organisms was established by amending the general enrichment medium with NaCl at concentrations of 20, 100, 250, 500, 750, 1,000, 1,500, 2,000, 2,500, and 4,000 mM. Enrichments were inoculated with 1% (vol/vol) Antrim Shale well water at the wellhead. Thus, well water samples were dispensed into medium at each salinity, yielding a matrix of well salinity/enrichment salinity incubations. All incubations occurred at 17°C in the dark and were maintained in triplicate for 6 months.

MPN series. MPN dilutions were employed to determine the relative numbers of viable, culturable methanogens capable of using different methanogenic substrates present in two wells (well C, 200 mM Cl⁻; well D, 1,041 mM Cl⁻). The medium was set up as described above, except that the carbon sources were limited to 0.005% yeast extract and one of the following: sodium acetate (10mM), trimethylamine (10mM), or 80:20 H₂/CO₂ at 160 kPa overpressure in the headspace. Dilutions without H₂/CO₂ were overpressured with 160 kPa NaCl₂. NaCl concentrations were amended to approximate field conditions, and pore water was serially diluted from 1:10 to 1:10⁰. Preparations were kept at room temperature in the dark for 2 months. Growth of methanogens was confirmed by microscopic analysis and by determining the increase in the headspace methane concentration (see “Geochemical analyses” below), and MPN series cell densities were calculated based on dilution to extinction using the software MPN Calculator (version V6h; http://www.isworkout.com/micruca/mpn/index.html).

Enumeration of cells. Fixed filters containing cellular material were removed from filter holders, mounted in a glass vacuum filter holder, and wetted with 1 mL phosphate-buffered saline solution. A vacuum was applied to near dryness, and filters were then stained with 500 μL of a 1:10-g/mL DAPI (4',6-diamidino-2-phenylindole) solution in phosphate-buffered saline solution in the dark for 2 min. The filters were washed in 10 mL phosphate-buffered saline solution to remove excess DAPI, dried by applying a gentle vacuum, and examined by epifluorescence microscopy. Cell counts were expressed as the average and standard deviation from 200 field counts per slide, using a 100×-magnification field of view, a 24-mm-diameter filter area, and 60 mL (total volume) of a filtered water sample. The presence of strongly fluorescing methanogens was confirmed on unstained filters as autofluorescence of cells by excitation at 420 nm; as such, the filters were visualized under UV light, and photographed. Bands were identified on each gel with the aid of BioNumerics software. For a positive control, DNA was extracted from the most saline well sample; extraction of new blank filters and the universal primer 1492R (5'-TAC GGY TAC CTT GTT ACG ACT T-3') and subsequent amplification of the 16S rRNA gene were performed as described above, with PCRs using a DNA template from each well performed in triplicate and subsequently pooled. PCRs were cloned into Escherichia coli JM109 competent cells using a pGEM-T Easy vector system (Promega, Madison, WI) according to the manufacturer’s instructions. DNA from 150 randomly picked clones was sequenced with primer 21F using a 3730xl DNA analyzer (Applied Biosystems, Foster City, CA). Sequences were manually edited in Chromas v.2.31 (Technelysium Pty Ltd., Tewantin, Queensland, Australia) and were aligned using the program ClustalX v.1.83 (52) in the software package BioEdit v.7.0.5 (53). Chimeric sequences were identified using Bellerophon (17), the Chimera_Check program from the Ribosomal Database Project (28), and the Chimera CHECK software package Mallard (3). Sequences found to be of potential chimeric origin through the analyses described above were excluded from further examination. Groups of sequences that were taxonomically unique from known taxa were assigned to operational taxonomic units (OTUs) (23) and a 97% sequence similarity criterion for identical phyotypes. The nearest relative of each OTU was determined by a BLAST search against the NCBI 16S rRNA GenBank database (http://www.ncbi.nlm.nih.gov/BLAST/). Minimum-evolution trees using a Tamura-Nei substitution model were created, and a bootstrap test of phylogeny with 1,000 replicates was performed using the software MEGA v.3.1 (23), 3, 5 and 5, which estimate the divestry present in the environment based on sampling, and rarefaction curves were calculated using DOUTR (48).

Geochemical analyses. Anions in water samples were analyzed by ion chromatography using an AS14 anion column with suppressed conductivity detection (Dionex, Marlton, NJ). Cations were analyzed by inductively coupled plasmaatomic emission spectroscopy (Teledyne-Leeman Labs, Hudson, NH). Concentrations of cations and anions were determined by comparison with gravimetric standards. Alkalinity was determined by endpoint titration, performed within hours of sample collection (12). Concentrations of enrichment culture headspace methane were measured by gas chromatography using a GC-8A (Shimadzu, Columbia, MD) equipped with a thermal conductivity detector and a 100/120 CarboSieve II column (Supelco, St. Louis, MO) and were quantified by comparison with headspace standards. Total dissolved organic carbon concentrations were determined by catalytic high-temperature combustion using a Shimadzu TOC-V CPH carbon analyzer (Shimadzu USA, Columbia, MD). Acetate concentrations in water samples were determined by solid-phase microextraction/gas chromatography using a method adapted from the method of Ábalos et al. (1). Briefly, volatile fatty acids in an acidified pore water sample were adsorbed to a Carbo-Wax fused-silica fiber and injected into an HP 6890 gas chromatograph equipped with a 30-m NUKOL capillary column and a flame ionization detector; quantification was achieved by comparison with volumetric standards of sodium acetate.

Nucleotide sequence accession numbers. The phylogenotypes detected in this study are available from the GenBank nucleotide database (www.ncbi.nlm.nih.gov) under accession numbers DQ830727 to DQ830735.

RESULTS

Geochemistry. The chlorine in the eight well water samples ranged from 8 to 3,490 mM Cl⁻, and the Na⁺ concentrations ranged from 47 to 1,755 mM (Table 1). The temperature ranged from 14.1 to 15.8°C, and the pH ranged from 5.6 to 8.0. Degassing of CO₂ from waters during sampling causes a rise in the pH, especially in waters with elevated alkalinity that are CO₂ supersaturated at atmospheric pressure. Thus, pH values greater than ~7 are likely to be overestimates of the real subsurface conditions. Modeling of the formation water pH using measured water chemistry and Geochemist’s Workbench
software (Rockware Inc., Golden, CO) predicts a pH range between 5.6 and 7.0. Nonetheless, pH does vary with salinity in this environment and may be responsible for some component of community variability. All wells lacked measurable concentrations of nitrate. The total dissolved Fe concentrations ranged from submicromolar to 2,397 μM, and there was a sharp decrease in the Fe concentration in wells with Cl− concentrations less than 1,000 mM. At circumneutral pH, an appreciable concentration of dissolved free Fe(III) is not supported. A limited amount of total Fe in solution may occur as chelated Fe(III) associated with dissolved organic matter. However, ample pyrite in the shale should buffer the electrochemical potential and preclude accumulation of ferric iron species, and the total dissolved Fe concentrations were greater than the dissolved organic carbon concentrations in all wells with water containing more than 1,000 mM Cl−. The two wells with the lowest salinity exhibited submillimolar SO4^{2−}− concentrations; the SO4^{2−}− concentration was below the detection limit, ~25 μM, in the remaining six wells. With the exception of well B (170 μM SO4^{2−}), the characteristic aroma of H2S was absent in all well samples. The alkalinity ranged from 6.3 to 39.5 meq liter−1 and was negatively correlated with the Cl− concentration (r² = 0.94). Acetate was detected in four of eight water samples (detection limit, ~5 μM) at concentrations ranging from 57 to 549 μM. No acetate was detected in wells with water containing less than 1,000 mM Cl−. Thus, while a biological source of acetate in these wells was supported, acetate consumption appeared to be inhibited at higher salinities. The lack of measurable acetate in the well with the highest salinity is consistent with a lack of biological activity at this highly saline site.

Enrichment cultures. Growth in methanogenic enrichment cultures, assessed as visible turbidity, was observed within 2 to 3 days after initiation. Turbidity was observed in all incubations except those initiated from well H (3,490 mM Cl−). Additionally, no growth was observed in incubations maintained at 2,500 and 4,000 mM Cl− for any of the sampled wells. Incubations derived from wells A through D (8 to 1,041 mM Cl) exhibited turbidity in enrichments with Cl concentrations up to 1,000 mM; turbidity was observed in incubations for well G (2,269 mM Cl−) at up to 2,500 mM Cl−. The headspace gas content of enrichments was measured 6 months after sampling, and the results showed distinct relationships between the headspace methane content, the incubation salinity, and the chloride concentration of the well from which each enrichment series was initiated (Fig. 2). Overall, incubations derived from wells with low salinity generated appreciable methane only at

TABLE 1. Sample information, geochemical data, direct cell counts, and nucleic acid extraction

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>Temp (°C)</th>
<th>pH</th>
<th>Alkalinity (meq liter−1)</th>
<th>[Cl−] (mM)</th>
<th>[Na+] (mM)</th>
<th>[Fe] (μM)</th>
<th>[SO4^{2−}] (μM)</th>
<th>Dissolved organic carbon (μM)</th>
<th>[Acetate] (μM)</th>
<th>Total counts (10^3 cells ml−1)</th>
<th>[DNA] (ng ml−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>302</td>
<td>15.8</td>
<td>7.96</td>
<td>32.1</td>
<td>8.4</td>
<td>60.0</td>
<td>0.021</td>
<td>169.5</td>
<td>BDL</td>
<td>6.2</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>280</td>
<td>12.3</td>
<td>7.49</td>
<td>39.5</td>
<td>12.8</td>
<td>46.5</td>
<td>0.0005</td>
<td>170</td>
<td>ND</td>
<td>BDL</td>
<td>6.3</td>
<td>0.008</td>
</tr>
<tr>
<td>C</td>
<td>296</td>
<td>14.4</td>
<td>7.59</td>
<td>34.1</td>
<td>200</td>
<td>163</td>
<td>0.027</td>
<td>803.4</td>
<td>BDL</td>
<td>5.1</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>442</td>
<td>14.5</td>
<td>6.71</td>
<td>29.8</td>
<td>1,041</td>
<td>1,617</td>
<td>0.337</td>
<td>326.8</td>
<td>BDL</td>
<td>57</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>412</td>
<td>14.1</td>
<td>6.36</td>
<td>24.3</td>
<td>1,403</td>
<td>1,755</td>
<td>2.40</td>
<td>190</td>
<td>BDL</td>
<td>6.1</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>479</td>
<td>ND</td>
<td>6.54</td>
<td>25.1</td>
<td>1,021</td>
<td>970</td>
<td>1.24</td>
<td>383.9</td>
<td>BDL</td>
<td>549</td>
<td>4.9</td>
<td>0.008</td>
</tr>
<tr>
<td>G</td>
<td>511</td>
<td>14.3</td>
<td>5.86</td>
<td>12.3</td>
<td>2,269</td>
<td>1,078</td>
<td>2.25</td>
<td>307.9</td>
<td>BDL</td>
<td>306</td>
<td>5.3</td>
<td>0.011</td>
</tr>
<tr>
<td>H</td>
<td>520</td>
<td>14.4</td>
<td>5.64</td>
<td>6.3</td>
<td>3,490</td>
<td>1,363</td>
<td>1.83</td>
<td>544.3</td>
<td>Minor</td>
<td>BDL</td>
<td>BDL</td>
<td></td>
</tr>
</tbody>
</table>

a Depth below the land surface.

b BDL, below the detection limit.

c ND, not determined.

d A small acetate peak was detected at the limit of detection (~5 μM).

FIG. 2. Methane concentrations in enrichments derived from six wells along the Antrim Shale salinity gradient, measured 6 months after initiation. No methane was detected in enrichments derived from highly saline well H (data not shown). The wells and chlorinities of shale pore waters from which enrichments were initiated are indicated.

FIG. 3. Chloride concentrations of pore waters from seven wells along a salinity gradient compared to the chloride concentrations of the enrichments with the greatest methane production (highest values for seven chloride concentrations in enrichments). No methane was detected in any incubation derived from well H.
low salinity, while higher-salinity well waters yielded methane over a much greater salinity range, up to 2,500 mM Cl\(^-\) in the case of incubations derived from well G. When the pore water Cl\(^-\) concentration of each well was compared to the Cl\(^-\) concentration in the enrichment derived from that well with the greatest headspace methane concentration, the values were very similar for five of six CH\(_4\)-producing enrichments (the exception was well G), indicating that the methanogenic community in each well was adapted to or optimized for its native pore water Cl\(^-\) concentration (Fig. 3). The exception may indicate that there was a shift in the enrichment community composition compared with the inoculum composition in response to high availability of H\(_2\) and CO\(_2\) in the enrichment or to other enrichment bias. The concentrations of headspace methane in enrichments derived from well H (3,490 mM Cl\(^-\)) enrichments were below the detection limit (0.1%), demonstrating that methane was not produced in enrichments that exhibited no turbidity.

Enumeration and nucleic acid extraction. Microbial cell densities, determined by direct microscopic enumeration, were low but relatively constant along the gradient in seven of the eight wells examined, and the average was approximately 6 \times 10^3 cells ml\(^-1\) pore water. Cells were not observed in well H (3,490 mM Cl\(^-\)), which corresponded to a lack of extractable DNA for this well. The extractable DNA yields from all wells were low, averaging 0.01 ng ml\(^-1\).

MPN series. MPN enrichments for medium-low-salinity well C (200 mM Cl\(^-\)) and medium-high-salinity well D (1,041 mM Cl\(^-\)) yielded low counts of cultivable cells for all three methanogen substrates examined (Table 2). The numbers of cultivable cells are much lower than the direct counts. However, epifluorescence microscopy of fixed water sample filters showed that only 1 to 5\% of the total cell population exhibited autofluorescence, indicating that strongly fluorescing methanogens comprised only a small fraction of the total microbial community. Methanogens that grew in the presence of acetate, H\(_2\)/CO\(_2\), formate, and some secondary alcohols to make methane (59). The MPN series for well D is surprising given the relatively high methane production observed in enrichment cultures derived from this well (Fig. 2). Negative controls which contained only 0.005\% yeast extract as a carbon source did not yield any methane.

RFLP analysis. Analysis of restriction fragment lengths revealed strong associations of fragment patterns for wells with similar salinities. With a few exceptions, wells clustered according to pore water salinity; an example is wells F (1,021 mM Cl\(^-\)) and D (1,041 mM Cl\(^-\)) (Fig. 4). Wells also appeared to cluster based on salinity instead of geographic proximity, as well G (2,269 mM Cl\(^-\)) clustered with well E (1,403 mM Cl\(^-\)) despite a geographic location much nearer well F (1,021 mM Cl\(^-\)).

Cloning and phylogenetic analysis. Partial 16S rRNA gene sequences from wells B (13 mM Cl\(^-\)) and G (2,268 mM Cl\(^-\)) were selected for cloning and sequence analysis. These wells were chosen because they represent the most northern and most southern methane-producing wells along the salinity gradient, have very dissimilar pore water salinities, and exhibited divergent archaeal communities based on the RFLP dendrogram. From the clone library, 89 randomly chosen, nonchimeric sequences were obtained from well B, and 155 sequences were obtained from well G. The individual libraries had no overlapping sequences.

Phylogenetic analysis placed all clones within the *Euryarchaeota* (Fig. 5). A single archaeal phylotype was observed for well B and grouped within the *Methanomicrobiales*; the estimated diversity is 1 (S\(_{\text{Chao1}}\) 100\% coverage). This phylotype was closely related to the cultured methanogen *Methanocorpusculum bavaricum*, with up to 99.5\% sequence similarity. Members of the family *Methanocorpusculaceae* exhibit metabolic versatility and are known to use H\(_2)/CO\(_2\)*, formate, and some secondary alcohols to make methane (59). The MPN series for well C indicated use of acetate and trimethylamine substrates, functions which are unknown among the *Methanocorpusculaceae*. Although wells B and C exhibit similar salinities and pHs, they are separated by 25 km. Thus, we cannot rule out the possibility that these wells contain different communities with different substrate requirements. Sequences related to known acetoclastic methanogens were not found in the well B library.

Analysis of well G revealed eight archaeal phylotypes; the estimated phylotype diversity is 11 based on S\(_{\text{Chao1}}\) (72\% coverage) and 18 based on S\(_{\text{ACE}}\) (44\% coverage). The great majority of the sequences (109 clones) clustered within the

![FIG. 4. Distance dendrogram based on RFLP analyses of archaeal 16S rRNA genes from eight sampled wells. The chloride concentration determined for each well is indicated in parentheses. The distance bar indicates the proportion of unique RFLP fragments for two wells.](http://aem.asm.org/Downloadedfromhttp://aem.asm.org/)
Methanosarcinales (Fig. 5) and were closely related to Methanosarcinales portucaensis, a halophilic methanogen commonly isolated from hypersaline environments which uses methanol and methylamines for growth and methanogenesis (4). Within these sequences, a group of 106 highly similar clones clustered with uncultured Methanosarcinales from other high-salinity sites, such as a hypersaline mat (49), soil surrounding a salt spring (54), and a deep-sea hypersaline anoxic basin in the Mediterranean Sea (58). The second dominant phylotype in the clone library (37 clones) from well G occurred within the Methanomicrobiales and was related to Methanoplanus petrolearius, with up to 97% sequence similarity (Fig. 5). M. petrolearius was isolated from an oil field offshore of Africa and in culture has been shown to tolerate salinities only up to 855 mM Cl⁻ (39). Similar sequences were also found in hypersaline water collected from two oil wells offshore of Monterey, CA (45).

Two distinct groups of well G clones had no cultured relatives. Uncultured Archaea group I consisted of two sequences that were 96% similar to each other but had less than 77% identity with other sequences in the current NCBI database (Fig. 5). The closest related sequences belonged to a clone from a deep-sea hydrothermal vent eukaryotic group sequenced from a subseafloor core (up to 73% similarity) (18) and an environmental sequence from a gas-rich mud volcano in the eastern Mediterranean (up to 76% similarity). Uncultured Archaea group II consisted of a single phylotype of six clones (Fig. 5), whose closest relatives were sequenced from other methane-rich environments, including two different eastern Mediterranean mud volcanoes (up to 91 and 92% sequence similarity) (16), a microbial mat at a hydrothermal vent in the Guaymas Basin (92% similarity) (9), and a sulfidic methane spring in Oklahoma (83% similarity) (10).

Rarefaction curves of the two libraries indicated that clones obtained from well B had been adequately sampled to cover the existing diversity, while well G requires greater sampling to
exhaustively describe the community (data not shown). This agrees with the calculated estimates of community richness S_{Chao1} and S_{ACE}. The coverage of sampling was estimated as the percentage of identified OTUs relative to the estimated total richness. Due to the lack of diversity in well B, an S_{ACE} value for diversity could not be calculated.

DISCUSSION

This study investigated archaeal diversity across a geochemical gradient in the Antrim Shale. The total cell counts, nucleic acid yields, and results of MPN dilutions suggested that microbial populations across the Antrim Shale salinity gradient are small but similar to those found in other subsurface, hydrocarbon-rich sedimentary environments (11, 45). The archaeal diversity found in the pore waters was also low, with eight phylotypes identified in well G and only one phylotype identified in well B. This is consistent with phylogenetic analyses of archaeal communities from other hydrocarbon-rich environments (13, 45) and from other wells that have been sampled in the Antrim Shale (32; Formolo et al., submitted). The archaeal phylotypes represented in the clone libraries were confined to the *Euryarchaeota* and almost exclusively to the *Methanosarcinales* and *Methanomicrobiales*. Within these taxa, however, cultured relatives are known to exhibit functional diversity, with forms capable of utilizing H_2/CO_2 formate, and alcohols among the *Methanomicrobiales*, and use of acetate, H_2/CO_2, alcohols, and methylated amines is known among the *Methanosarcinales*. Additionally, the nearest relatives of two uncultured archaeal groups are organisms found in sulfidic, methane-rich marine environments, suggesting that there is other functional diversity among these archaea. The lack of external inorganic electron acceptors other than CO_2 is uncommon compared with the situation in marine sediments and other sedimentary basins, given that most subsurface hydrocarbon-rich environments exhibit indirect geochemical evidence for common terminal electron-accepting processes, including abundant $\text{SO}_4^{2-}/\text{H}_2\text{S}$ or mineral Fe oxyhydroxides (2, 7, 13, 21, 23, 24, 25, 27, 46, 50). This lack may contribute to the low archaeal diversity in the Antrim Shale compared with the diversity in other subsurface, methanogenic environments (13, 45). The community may be limited by the rate at which substrates for methanogenesis can be generated from shale organic matter solely by fermentation and hydrolysis. The Antrim Shale is a very stable environment and has been hydrologically isolated from surface waters for at least 7,000 years (30, 34), supporting the potential for well-adapted species to dominate. At this point, the metabolic roles which provide the necessary substrates for Antrim Shale methanogens can only be speculated on, although fermentation and/or anaerobic respiration using organic electron acceptors can be considered.

The absence of 16S rRNA gene sequences related to acetoclastic methanogens in well B was surprising since the low salinity of the pore waters coupled with an environment conducive to fermentation should theoretically support acetoclastic growth. Sequences closely related to known acetoclastic methanogens have been recovered from both low-temperature (13) and high-temperature (45) petroleum reservoirs, as well as in subsurface sedimentary environments (56). 16S rRNA gene sequences that are closely related to *Methanoseta con-
methanogenesis may develop in environments ranging from...community has adapted to, and exhibits optimum methane...methanogens differ in these communities. This...are not the same as the substrates used at a higher salinity. The...aerobic degradation of sedimentary organic matter, which may...acids in waste waters. J. Chromatogr. 107–115.

ERRATUM

Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in Sedimentary Rock Rich in Organic Matter

Patricia J. Waldron,1† Steven T. Petsch,2* Anna M. Martini,3 and Klaus Nüsslein1

Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts 010031;
Department of Geosciences, University of Massachusetts Amherst, Amherst, Massachusetts 010032;
and Department of Geology, Amherst College, Amherst, Massachusetts 010023