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To advance techniques for screening large data sets of
diverse structures for toxicologically active compounds, an
algorithm was developed that is not dependent upon a
predetermined and specified toxicophore or an alignment
of conformers to a lead compound. Instead, the approach
provides the means to identify and quantify specific global
and local stereoelectronic characteristics associated with
active compounds through a comparison of energetically-
reasonable conformer distributions for specific descriptors.
To illustrate the algorithm, the stereoelectronic
requirements associated with the binding affinity of 28
steroidal and non-steroidal ligands to the androgen receptor
were defined. Common ranges of interatomic distances,
atomic charges, and atom polarizabilities of oxygen atoms
for conformers of the ligands with the highest affinity for
the androgen receptor (most active) did not overlap with
those identified for conformers with the lowest binding
affinity (least active). Using a set of stereoelectronic
parameters that provided a maximal measure of pair-
wise similarity among the conformers of the most active
ligands, a model was developed to screen compounds for
binding affinity. The model was capable of discriminating
inactive ligands, as defined by a specified binding affinity
threshold. This modeling technique could be a useful
initial component in an integrated approach of employing
computational and toxicological techniques in hazard
identifications for large databases.

Introduction
Developing structure-activity relationships to screen large
data sets of diverse chemical structures for toxicological

activity in a technically-sound manner is challenging. Models
capable of identifying relevant molecular characteristics that
result in similar levels of activity require a clear definition of
the toxicological end point(s) of concern to define a set of
mechanistically-based assumptions regarding the xenobiotic
interaction(s) in question (1). Recent reports that a wide
variety of natural and synthetic compounds are capable of
acting as steroid hormone ligand agonists and antagonists
serve as timely examples of the need to advance mechanisti-
cally-based screening techniques to support human health
and ecological risk assessments (2). In attempting to model
hormone receptor-ligand interactions as one step in the
mechanism of action for steroidal agonists and antagonists,
the development of an efficient three-dimensional (3-D)
approach to quantify chemical structure and similarity for
large datasets is required.

Typical approaches to quantify 3-D similarity in the context
of ligand-receptor interactions encompass pharmacophore
(or toxicophore) search methods and receptor-site mapping
(3-8). The selection of appropriate conformations and the
proper alignment of structures to the lead compound are
significant challenges with these methods. There are a
number of good techniques for superimposing molecules (9-
12). Typically, hundreds of alignments are explored to reach
an optimum outcome, which if not carefully evaluated and
explained in the context of a presumed mechanism of
interaction with the receptor may result in models that violate
the criteria of Topliss and Edwards (13) for causality in
structure-activity models. Further, the use of the lowest
energy conformers for flexible structures to assess similarity
in pharmacophore search and receptor-mapping algorithms
may be inappropriate because, in complex systems such as
biological tissues and fluids, it is likely that the minimum
energy conformer does not interact with the target. In fact
the lowest energy, gas-phase conformations might be the
least likely to interact with the solvent or macromolecules
(14), and solvation and binding interactions could compensate
for energy differences among the conformers of a chemical
(15-18). In an attempt to address the issue of conformational
flexibility, Prendergast et al. (19) reported an approach to
identify specific conformers of ligands acting as antagonists
to the angiotensin-II receptor, based on interatomic distances.
All geometrically reasonable conformers were assessed;
however, conformational energies were not evaluated, and
energy minimization was not performed during the search.

The objective of the present study was to generalize the
use of multiple conformers in an active analogue approach.
The COmmon REactivity PAttern (COREPA) approach cir-
cumvents the problems of conformer alignment and selection,
and initial assumptions concerning specific atoms/fragments
in a pharmacophore are not an obligatory step. In addition,
the method is not restricted to using interatomic distances,
but implicitly defines the common reactivity pattern across
any global and local reactivity parameter hypothesized to be
associated with the specific biological endpoint under study.
To illustrate the algorithm, the stereoelectronic requirements
associated with the binding of a diverse set of ligands to the
androgen receptor (AR) were defined. This particular analysis
was undertaken, in part, because of recent concern that
adverse effects on the health of humans and wildlife have
been or currently are being elicited by chemicals that exert
toxicity through agonistic or antagonistic interactions with
steroid receptors (2, 20). In turn, this concern has lead to the
call for developing techniques to support first-tier, or screen-
ing-level, hazard identifications for new and existing chemi-
cals (2).
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Materials and Methods
The methodology to elucidate chemical similarity is based
on the assumption that chemicals that elicit similar biological
behavior through a common mechanism of action should
possess a commonality in stereoelectronic descriptors. Elu-
cidation of this common reactivity pattern within a set of
toxicologically similar chemicals requires examination of the
conformational flexibility of the compounds to evaluate
molecular similarity in the context of the associated variability
in specific stereoelectronic parameters.

(A) The COREPA Approach. The Algorithm. The prin-
cipal steps of the algorithm can be summarized as follows:

Step 1. Definition of the Training Set of Chemicals. A
defined subset of chemicals in the reaction series under
investigation are selected as the training set. The training set
can include either the most or least active chemicals, as
defined by a user-imposed threshold of biological activity.
This initial step establishes the extent of biological similarity
among the chemicals from which stereoelectronic similarity
will be discerned in the subsequent steps of the algorithm.

Step 2. Evaluation of Stereoelectronic Parameters Hy-
pothesized To Be Associated with Biologically Similar Com-
pounds. A restricted set of parameters, hypothesized to be
associated with biological activity, are evaluated based on
the normalized sum of dynamic similarity indices (see
Dynamic Similarity Method) between each pair of molecules
in the training set. For each parameter evaluated, the
normalization is based on the sum of the pair-wise similarity
index values divided by the number of pairs examined. The
stereoelectronic parameters that provide the maximal mea-
sure of similarity among the chemicals in the training set are
assumed to be most closely associated with the activity under
consideration and are used in the subsequent step of the
algorithm. To minimize the potential for creating chance
similarity relationships, or similarity relationships that are
unique to the training set, the algorithm is not employed by
evaluating all possible stereoelectronic parameters, but only
those that have a mechanistically-reasonable basis.

Step 3. Recognition of the Common Reactivity Pattern.
For each stereoelectronic parameter identified in step 2, the
conformer distributions of the chemicals from the training
set are superimposed, and the parameter ranges common
for conformers from all of the chemicals are identified. The
distribution intersections (i.e., commonly populated param-
eter ranges) can be either discrete or continuous. Note, it is
possible that for some of the parameters identified in step 2
there may not be a common range that incorporates at least
one conformer from each chemical. The collection of
common stereoelectronic parameter ranges defines the
common reactivity pattern. In the context of local stereo-
electronic ranges, it is essential to subsequently elucidate the
associated specific atom types, fragments, and interatomic
distances.

Conformer Generation. A primary aspect of the approach
is to evaluate the conformational space for the chemicals
under study using a number of conformers that can reason-
ably be assumed to represent the diversity of relevant
stereoelectronic character for the biological process of interest.
Conformer generation was based on a combinatorial pro-
cedure (21) that initiates from molecular topology and
generates all conformers consistent with steric constraints
(e.g., distances between non-bonded atoms, ring-closure
limits, torsion resolution) and expert rules (likelihood of
intramolecular hydrogen bonds, cis/trans, or ( isomers). This
technique has been used in modeling ligand binding affinity
to the estrogen (ER) and aryl hydrocarbon receptors (AhR)
(16, 17). Of special note is that the technique incorporates
the conformational flexibility of saturated cyclic molecular
fragments, as opposed to other techniques that only explore
conformational space formed by rotations around acyclic
single bonds (21). In cases with strained cyclic structures,

the exhaustive generation of 3-D isomers usually requires
less restrictive geometric constraints. As a result, some of
the generated conformers could be distorted with respect to
geometric parameters. In such cases an original strain
minimization technique (pseudo-molecular mechanics, PMM)
is applied based on a simple energy-like function where only
the electrostatic terms are omitted (21). Geometry optimiza-
tion can then be completed by more accurate force field or
quantum-chemical methods.

Dynamic Similarity Method. The implementation of step
2 in the COREPA algorithm is based on a procedure described
by Mekenyan et al. (22), where specific descriptors are
evaluated across conformer data sets to elucidate those
aspects of stereoelectronic structure most similar among
compounds with similar biological activity (as defined in step
1 of the approach). For stereoelectronic parameters selected
based on a known or hypothesized involvement in a biological
process, parameter values are derived for all of the conformers
for all of the chemicals within a data set. The resulting
parameter range is then partitioned, and a frequency
distribution is created for each compound that is based on
the number of conformers that populate the parameter
partitions. In cases where the parameter is an atomic or
local stereoelectronic descriptor, such as charge, superde-
localizability, polarizability, etc., the frequency distributions
are based on the number of atoms from all the conformers
that populate the partitions. However, the correspondence
of an atom to a specific conformer is maintained. Interatomic
distances in molecules are also considered to be local
parameters, and these frequency distributions are based on
the number of distances from all the conformers located
within specified distance partitions.

Following the establishment of conformer frequency
distributions for each compound, a pattern-based similarity
search is then employed, where frequencies of conformers
derived from specific compounds are compared across the
entire chemical and parameter data set. When superimposing
chemical-specific conformer distributions for two com-
pounds, the partitions can be occupied by conformers of one
of the molecules or by the conformers of both molecules. In
the current study, the difference in frequency distributions
for two molecules was assessed by the Tanimoto coefficient
S(AB), the related Hodgkin-Richards similarity metric, SH(AB),
cosine, COS(AB), the Euclidean metric, DS(AB), and the
Shannon information content, I(AB) (23-29). The index
values for S(AB), SH(AB), and COS(AB) corresponding to
maximum similarity and minimum similarity are 1 and 0,
respectively. For DS(AB), maximum and minimum similarity
values are 0 and infinity, respectively. I(AB) assesses con-
formers populating common partitions only and tends toward
0 when common partitions are evenly populated. The
Supporting Information provides a more detailed description
of these indices.

When comparing molecules, it is essential that the
geometric constraints used to generate conformers be held
constant across all chemicals in the data set. The use of
different geometric constraints for chemicals in the data set
could lead to a bias in the conformer distributions that results
in similarity conclusions that are actually based on the
conformer generation algorithms, rather than presumed
differences in 3-D character.

(B) COREPA Analyses for AR Ligand Binding Affinity.
AR Ligands and Binding Affinity. The AR ligands examined
in this study are depicted in Figure 1 and consist of nine
steroids, two synthetic steroids, and 17 non-steroids. AR
binding affinities were obtained from Kelce et al. (30) and
Waller et al. (31) and are based on a competitive binding
assay using [3H]RI881 [a radiolabled synthetic androgen; see
Kelce et al. (30)]. This data set was selected because it
represents a compilation of binding data generated within
the same laboratory using consistent conditions, thereby
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minimizing the contribution of biological variability to
uncertainty in the modeling results. In addition, the data set
represents several chemical classes, which include natural
ligands as well as those representative of xenobiotics proposed
to disrupt endocrine function (30, 31). The pKi values (the
negative log of the equilibrium dissociation constants;

provided by C. L. Waller) are listed in Table 1. In the following
analyses, 2-{[(3,5-dichlorophenyl)carbamoyl]oxy}-2-methyl-
3-butenoic acid (M1), 3′,5′-dichloro-2-hydroxy-2-methylbut-
3-en anilide (M2), 3,5-dichlorobenzanilide 2-cyclopropane-
carboxylic acid (P1), 2,2-bis(p-hydroxyphenyl)-1,1,1-tri-
chloroethane (HPTE), hydroxylinuron, PCB153, and the

FIGURE 1. Structures of androgen receptor ligands used to establish training and validation sets (see Table 1 for compound names).
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hydoxylated analog of PCB153 (Figure 2) were used as an
external validation data set to evaluate similarity models
derived in the study.

AR Ligand Conformations. In generating conformers for
the AR ligands, specific geometric constraints were imposed
for different types of bonds in the chemical data set. The
torsion resolution (TR) around ‘saturated’ (SP3-SP3) bonds
was chosen to be 120° using an initial torsion angle of 60˚
with respect to the plane of the preceding three atoms. For
aromatic fragments and incident bonds, the TR was set at
180°, with an initial torsion angle of 0°, to minimize the
combinatorics. For all non-steroid chemicals, 1.5 Å was set
as the distance between non-bonded atoms, while 1.2-1.8
Åwas the range imposed for ring closure. The same geometric
constraints were imposed for the acyclic moieties of the
steroids. Due to the rigidity of the natural steroids and their
derivations, less restrictive geometric constraints for ring
closures (1.0-2.5 Å and torsion resolution of 60°) were
imposed for their cyclic moieties to generate a sufficiently
large set of conformations with the same stereospecificity as
the natural enantiomers with B/C trans and C/D trans ring
fusion. Each of the generated conformers were submitted to
PMM optimization. Subsequently, the conformational de-

generacy of the isomers was detected (within a 30° range of
torision angle difference) due to molecular symmetry and
geometry convergence. The number of conformations
generated under these constraints is listed in Table 1 (denoted
as N1). Subsequent geometry optimization of the conformers
was employed with MOPAC 7 (32), using the AM1 Hamiltonian
with the key words ‘PRECISE’ and ‘NOMM’. As a result of
the optimizations, some of the conformations quenched into
the same energy minima, which reduced the number of
conformers (denoted as N2 in Table 1). Finally, these
conformers were screened to eliminate any structures with
∆Hf° values that were 20 kcal/mol or higher than that
calculated for the conformer associated with the ‘absolute’
energy minimum (see Results and Discussion for an expla-
nation of this threshold). In the current study, none of the
conformers exceeded this threshold.

As an illustration, after energy optimization (first by the
PMM technique and then by the quantum chemical ap-
proach), the 19 conformations of estradiol (E2) originally
generated (N1 in Table 1) quenched into four conformers
having differences of at least 30° for at least one pair of their
torsion angles (based on the 30° threshold for conformational
degeneracy). The range in ∆Hf° values for the energy minima

TABLE 1. Androgen Receptor Ligands, Observed Binding Affinities, Generated Conformers, and Ranges of RMS and ∆Hf° (Based
on N2 Conformers)

pK (µM)a no. of conformers parameter ranges

compd no. androgen receptor ligands obsd N1 N2 RMS ∆Hf° [kcal/mol]

1 mibolerone 3.00 43 9 0.772-2.002 -117.866 to -106.652
2 methylrienolone 3.00 169 12 0.260-1.717 -68.008 to -52.750
3 5R-dihydrotestosterone 2.30 23 5 0.236-0.478 -143.529 to -134.074
4 testosterone 1.82 44 6 0.409-1.624 -115.286 to -104.969
5 estradiol 0.96 19 4 0.334-0.863 -107.616 to -96.898
6 5R-androstane-3R,17â-diol 0.70 17 4 0.131-0.541 -160.722 to -150.943
7 ∆1-androstenedione 0.60 15 5 0.587-1.816 -95.834 to -81.456
8 hydroxyflutamide 0.05 28 19 2.007-4.972 -213.829 to -195.491
9 p,p-DDE -0.48 15 4 0.874-3.654 39.987 to 43.957

10 diethylstilbestrol (DES) -0.66 126 21 1.909-7.950 -47.519 to -45.062
11 p,p-DDT -1.26 19 5 1.312-6.785 18.832 to 20.424
12 o,p′-DDT -1.48 24 14 1.917-7.351 21.096 to 32.743
13 kepone -1.61 1 1 0 18.354
14 linuron -2.00 27 26 1.483-4.911 -13.921 to -2.541
15 progesterone -2.40 291 22 0.385-1.911 -105.648 to -88.658
16 17R-hydroxyprogesterone -2.40 268 24 0.800-2.631 -142.232 to -126.488
17 corticosterone -2.70 129 35 0.531-2.327 -191.442 to -172.466
18 pregnolone -2.70 198 13 0.595-1.557 -127.281 to -119.877
19 methoxychlor -2.70 31 20 2.264-6.126 -43.447 to -39.594
20 vinclozolin -2.70 24 11 0.667-3.189 -57.180 to -47.413
21 procymidone -2.70 16 6 1.590-4.995 -16.206 to -9.140

a Data obtained from ref 31.

FIGURE 2. Structures of androgen receptor ligands with experimental binding affinities (31) used as an external evaluation set (22,
2-{[(3,5-dichlorophenyl)carbamoyl]oxy}-2-methyl-3-butenoic acid; 23, 3′,5′-dichloro-2-hydroxy-2-methylbut-3-en anilide; 24, the hydoxylated
analog of PCB153; 25, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane; 26, 3,5-dichlorobenzanilide 2-cyclopropanecarboxylic acid; 27, PCB153;
28, hydroxylinuron).
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associated with these four E2 conformers (Figure 3) was
-107.616 to -96.898/kcal/mol (∆∆Hf° ) 10.718 kcal/mol),
which is comparable with the free energy of E2 binding to the
ER (e.g., ∆G of -12.1 kcal/mol at 4 °C; Ka ) 3.7 × 109 M-1;
18). As can be seen in Figure 3, energy differences between
some of the structures are relatively small, e.g., 1.56 kcal/mol
between conformers I and II and 0.593 kcal/mol for III and
IV. The lowest energy E2 conformer corresponds to the
previously reported X-ray structure (33, 34). The second
conformer, with formation enthalpy of -106.053 kcal/mol,
has also been predicted from a simulated annealing search
method described by Wiese and Brooks (18). The differences
between conformers I and II reside entirely in altered B-ring
conformations, which is a distorted 7R,8â half-chair for E2-I
and the boat conformation for E2-II. The third conformation
predicted in the present work is similar to E2-II, however, a
distorted boat is generated for the B-ring, which produces a
twisting of the C- and D-rings. This distortion results in a
8.36 kcal/mol increase in ∆Hf°, relative to the conformationally
similar E2-II. At higher thresholds for degeneracy (e.g., 60°),
conformer III is identical to E2-II. The B- and C-ring
conformations in E2-IV (B-ring as a distorted boat and C-ring
as a boat conformation) have entirely different configurations
compared to E2-III, although they are associated with small
differences in ∆Hf° values.

Table 1 lists the range of root mean square (RMS)
differences for each compound, based on comparisons of
each conformer with the lowest energy structure. Smaller
RMS ranges were associated with steroid derivatives, con-
sistent with their greater rigidity. For example, RMS ranges
of 0.722-2.002, 0.334-0.863, and 2.007-7.972 were derived
for mibolerone (1), estradiol (5), and hydroxyflutamide (8),
respectively.

Molecular Descriptors. The global and local electronic
descriptor pool used in the present study was restricted to
parameters hypothesized to be associated with AR binding
affinity based on previous analyses by Waller et al. (31), as
well as other studies using a variety of model receptors (16,
17, 35, 36). Stereoelectronic parameters were calculated with
MOPAC 7 (32), augmented by a computing module that
provides additional reactivity descriptors, using the AM1 all-
valence electron, semi-empirical Hamiltonian. The elec-
tronegativity (EN), dipole moment (µ), volume polarizability
(VolP) energy of frontier orbitals (EHOMO and ELUMO), and the
electronic gap (EHOMO-LUMO) were used as global electronic
descriptors, whereas the atomic charges (qi), frontier atomic
charges (fi

HOMO and fi
LUMO), and donor and acceptor super-

delocalizability indices (Si
E and Si

N; 37-39 ), as well as atomic
self-polarizabilities (pii) were calculated as local electronic
indices (i denotes a specific atom in a molecule). In the
present study, when searching common patterns based upon
local parameter distributions, the atomic reactivity indices
were not restricted to specific rings in steroidal or non-
steroidal derivatives.

Conformers were also screened based on the steric
descriptors GW (sum of geometric distances; 40), Lmax (the
greatest interatomic distance), dij (steric distance between
atoms i and j), and planarity (the normalized sum of torsion
angles in a molecule; 16). These descriptors were selected
because hydrophobicity, steric bulk, and size constraints have
been reported as important criteria in predicting and
interpreting ligand binding for nuclear steroid receptors (17,
31, 35, 41-43). Finally, volume polarizability (VolP), defined
as a sum of atomic self-polarizabilities and thus the averaged
ability of a compound to change electron density at its atoms
during chemical interactions (38, 44), was selected as a
physicochemical descriptor. Lower values of VolP (VolP >
0) reflect higher charge localizations and more polarizable
(less lipophilic) molecules (44). This descriptor was used
based on previous observations, suggesting that more po-
larizable polychlorinated hydroxybiphenyls ligand conformers
generally had greater binding affinities to ER (17).

COREPA Analyses. To initially illustrate the approach,
the eight conformers with greatest binding affinity and the
eight conformers with the lowest binding affinity were selected
as training sets (step 1) and carried through steps 2 and 3,
with 20 partitions used in step 3. Next, the influence of
biological similarity on quantifying chemical similarity was
illustrated in step 3. Analyses, restricted to local atomic
charges and local distances, were used in training sets
containing four, six, or eight of the most active compounds
(pKi value ranges of 3.00-1.82, 3.00-0.70, and 3.00-0.05,
respectively) with 10, 20, 30, or 40 partitions. The common
reactivity pattern obtained with the six most active isomers
was subsequently evaluated based on the ability to dif-
ferentiate subsets of the remaining compounds in Table 1 as
well those in the external evaluation set of structures (Figure
2). To facilitate a summary of the results, hereafter the terms
high and low activity are used to denote high and low ligand
binding affinity. However, the term activity should not be
construed to impart any conclusion as to biocharacter or
potency of the ligands.

Results and Discussions
Conformational Flexibility and Electronic Structure. The
range of ∆Hf° values for conformers of any chemical was less
than 20 kcal/mol (see column N2 in Table 1). Assuming a
free energy of binding to steroid hormones in the range of
-10 to -15 kcal/mol [e.g., -12.1 kcal/mol for the binding of
E2 to the ER (18)], the 20 kcal/mol threshold for ∆∆Hf° was
assumed to result in an energetically reasonable set of
conformations, especially given the extent to which energy
provided during ligand binding could facilitate conforma-
tional transformations (17, 18). To provide a sense of
variability in 3-D shape associated with the conformers used
in the analysis, relevant torsional angles and non-bonded
interatomic distances associated with the lowest and highest
energy structures are presented in the Supporting Informa-
tion.

For a given compound, conformers within the specified
range of ∆∆Hf° often exhibited significant variation in
potentially relevant electronic descriptors, as summarized
within Table 1 of the Supporting Information. For example,
conformers of hydroxyflutamide (8) had a range 0.63 eV for
ELUMO, 1.09 eV for EHOMO, 0.61 eV for EHOMO-LUMO, 0.011 (au)2/
eV for VolP, and 6.51D for µ. Similar variations were observed
for the non-steroidal compounds 9, 10, 14, 20, and 21. The
parameter ranges for the steroids, while smaller (likely due

FIGURE 3. Generated E2 conformers having the same stereochemistry
as the natural enantiomer with its B/C trans and C/D trans fusions.
Conformational degeneracy of the optimized conformations was
detected at a 30° threshold for torsion angle differences. The
conformers are energy minima obtained by making use of force field
and quantum chemical approaches. The AM 1 calculated formation
enthalpies are presented. Conformers I and II are those predicted
from the simulated annealing search method by Wiese and Brooks
(18).

3706 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 31, NO. 12, 1997



to their rigidity) are also noteworthy. For example, conformers
of methyltriendone (2) had a range of 0.296 eV for ELUMO,
0.175 eV for EHOMO, 0.463 eV for EHOMO-LUMO, 0.01 (av)2/eV for
VolP, and 1.60D for µ. The observation that relatively small
energy differences between conformers can be associated
with significant variations in electronic structure highlights
the necessity of including all energetically-reasonable con-
formers when defining common reactivity patterns.

Illustration of the COREPA Algorithm. To illustrate the
COREPA algorithm, training sets were established (step 1) by
selecting the eight most active AR ligands (pKi values > 0.0)
and comparing their reactivity patterns to the eight least active
ligands (pKi values e -2.0). Pairwise similarity was assessed
between chemicals within each training set by employing
the 3-D dynamic similarity method (step 2). Potentially
relevant reactivity parameters were identified for the most
and least active compounds based on Sav, SHav, COSav, DSav,
and Iav values, normalized over all pairs of compounds within
a training set (see Table 2; steric and electronic parameters
are listed based on values of Sav).

For all indices, local steric and electronic parameter
distributions typically exhibited greater degrees of similarity
within each training set than did global parameters. Trends
in Iav were found to parallel Sav (r 2 ) 0.96 and 0.88 for the
most and least active ligands, respectively), as did trends
between SHav and COSav (r 2 ) 0.98 and 0.77). Values for DSav

showed some degree of orthogonality to the other indices.
However, in general, higher values of Sav, SHav, COSav, and Iav

corresponded to lower values of DSav. As defined in eqs 4
and 5 in the Supporting Information, DSav may overestimate
differences in flexibility between molecules, i.e., the differ-
ences in population intensity with each partition. Thus, even
in cases where conformers of both molecules occupy common
and broad parameter partitions, the DSav value may still be
large (suggesting high dissimilarity), possibly due to large
differences in population intensities within the partitions.

The data summarized in Table 2 suggest that the eight
most active and inactive AR ligands have the greatest similarity
to members within each respective training subset in terms
of distributions of charges (qi), steric distances (dij), donor
delocalizabilities (SiE), frontier charges on HOMO (fi

HOMO)
and atom polarizabilities (πii). To establish common reactivity
patterns (step 3), conformer frequency distributions of
compounds from each of the two training sets were subse-
quently examined across all local stereoelectronic descriptors
presented in Table 2, with results based on qi, presented in

Figure 4. In these analyses, the number of parameter
partitions was set at 20 for each descriptor.

Even though conformer distributions from the most active
and least active sets of compounds overlap, the subset of

TABLE 2. Average Tanimoto (Sav), Euclidean Distance (DSav), Shannon Information Content (Iav), Hodgkins-Richards Similarity
(SHav), and Cosine (COSav) Metrics Normalizing Pairwise Similarity between Eight Most Active (pKi Values > 0.0) and Eight Least
Active (pKi Values e -2.00) Androgen Ligands (See Table 1) in Context of Stereoelectronic Descriptors Hypothesized To Be
Related to Ligand Binding to AR

eight most active ligands eight least active ligands

compd no. parameters Sav DSav Iav SHav COSav Sav DSav Iav SHav COSav

1 ∆Hf° 0.000 0.354 0.000 0.000 0.000 0.006 0.376 0.063 0.000 0.000
2 GW 0.000 0.354 0.000 0.000 0.000 0.000 0.365 0.000 0.000 0.000
3 Lmax 0.000 0.354 0.000 0.000 0.000 0.016 0.477 0.162 0.000 0.000
4 planarity 0.000 0.354 0.000 0.000 0.000 0.033 0.463 0.252 0.000 0.000
5 VolP 0.000 0.354 0.000 0.000 0.000 0.000 0.354 0.000 0.000 0.000
6 EHOMO-LUMO 0.000 0.456 0.000 0.000 0.000 0.023 0.686 0.167 0.000 0.000
7 EN 0.000 0.399 0.000 0.000 0.000 0.034 0.600 0.438 0.314 0.883
8 ELUMO 0.001 0.365 0.018 0.000 0.000 0.017 0.654 0.198 0.000 0.000
9 µ 0.018 0.779 0.109 0.144 0.447 0.112 0.433 0.862 0.761 0.991

10 EHOMO 0.024 0.934 0.226 0.545 0.897 0.029 1.191 0.310 0.067 0.125
11 Si

N 0.068 0.357 1.689 0.702 0.859 0.109 0.366 1.951 0.866 0.997
12 Si

E 0.082 0.369 1.719 0.545 0.984 0.127 0.363 1.989 0.793 0.973
13 fi

HOMO 0.083 0.377 1.721 0.358 1.000 0.149 0.362 2.023 0.846 0.998
14 fi

LUMO 0.085 0.401 1.710 0.640 1.000 0.153 0.361 2.031 0.986 0.994
15 qi 0.089 0.395 1.736 0.493 0.925 0.132 0.382 1.995 0.693 1.000
16 πii 0.089 0.365 1.737 0.460 0.954 0.120 0.365 1.978 0.873 0.941
17 dii 0.092 0.374 2.523 0.437 0.969 0.120 0.408 2.708 0.327 0.671

FIGURE 4. Common parameter ranges and conformer frequency
distributions based on atomic charges (qi) with 20 parameter
partitions for (a) the eight most active androgen receptor ligands
(pKi values > 0.0; diagonal cross-hatch); (b) the eight least active
androgen receptor ligands (pKi values e -2.00; full cross-hatch).
See Table 1 for compound names and associated binding affinities.
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common partitions that contains conformers from each of
the active compounds does not overlap with partitions
containing conformers from each of the least active com-
pounds. Thus, the common atomic charge pattern associated
with the eight most active ligands (Figure 4a) deviates
significantly from that of the eight least active chemicals
(Figure 4b). For the most active compounds, common
partitions (the diagonal cross-hatched bars in Figure 4)
corresponded to oxygen and nitrogen (8) atoms (-0.322 to
0.275 au) and carbon atoms (-0.228 to -0.039 au) of the
steroid template (denoted as ‘C-skeleton’). While a common
range of charges was observed for C-skeleton carbons in the
least active compounds (full cross-hatched bars in Figure 4),
no common range corresponding to oxygens was identified
(Figure 4b). Similar observations were made for reactivity
patterns based on atom polarizabilities where common ranges
due to oxygen atoms (0.030-0.032 au2/eV), carbon atoms
next to oxygens (R-C atoms; 0.044-0.046 au2/eV), and
C-skeleton atoms (0.048-0.050 au2/eV) were observed for
the most active compounds (data not shown). While a similar
range of oxygen polarizability was noted for the least active
compounds, a common range for R-C atoms was not
observed, and the range for C-skeleton atoms was significantly
wider. A comparison of reactivity patterns based on inter-
atomic distances also showed significant differences between
active and inactive compounds. The common partition that
included the largest interatomic distances for the most active
compounds was 9.75-10.20 Å (data not shown). It should
be noted, however, that a range of 10.64-11.10 Å, formed by
the largest interatomic distances for conformers of the seven
most active compounds, included oxygen-oxygen inter-
atomic distances only. A common range based on distances
between oxygens was not apparent for the least active
compounds. For this training set, a distance range of 8.72-
9.26 Å, corresponding to the largest interatomic distances
between carbon-carbon and carbon-oxygen atoms, was
observed.

Previous modeling (17, 31, 35, 41) and structural studies
(35, 42, 43) of nuclear steroid receptors have indicated the
importance of steric constraints and size in predicting and
interpreting ligand binding. For example, Waller et al. (31)
reported that, for steroid derivatives, increases in steric bulk
(size) in the vicinity of the B-ring off of the C6 and C7 atoms,
the C-ring off of the C11 and C12 atoms, and the D-ring off
the C17 atom were associated with increased binding affinity.
Consistent with these observations, 3-D models of steroid
receptor ligand binding domains suggest specific spatial
arrangements of amino acid residues thought to be associated
with A-and D-ring ligand interactions (35, 42, 43). Thus, the
finding in this study that interatomic distances are similar for
active ligands likely is associated with size constraints in the
binding domain and/or indirectly associated with local steric
characteristics.

The observation that active AR ligands have specific local
electronic descriptor parameter ranges associated with greater
negative charge and electron donating character also is
consistent with previous research for steroid receptors.
Studies by Waller et al. (31) suggested that increased negative
charge in the vicinity of the C3 atoms of the A-ring and C17
substituents of the D-ring are associated with increased ligand
binding affinity of steroidal compounds. These findings also
are consistent with those of Waller et al. (41), Bradbury et al.
(17), and VanderKuur et al. (36) that indicated similar
characteristics in ER ligands. While recent structural studies
of the ligand binding domains of nuclear receptors suggest
that these sites are largely hydrophobic (35, 42, 43), there is
also evidence of specific polar residues that may be associated
with hydrogen bonding and weak polar interactions (35, 43).
In turn, different residues within the binding pockets of
different nuclear receptors are presumed to be responsible
for determining ligand specificity (43).

Influence of Training Set Size and Number of Partitions
on Algorithm Behavior. Reactivity patterns based on atomic
charge and interatomic distances for combinations of training

FIGURE 5. Charge frequency (qi) distribution of the six most active androgen receptor ligands (pKi values g0.70; see Table 1) with 10 (a),
20 (b), 30 (c), and 40 (d) partitions. Diagonal cross-hatch denotes ranges populated by at least one conformer from each ligand.
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set size (i.e., ranges of pKi of values) and number of partitions
used to define frequency distributions were established to
illustrate how variations in biological activity (i.e., different
assumptions of biological similarity in terms of pKi values)
could be related to measures of chemical similarity.

When using a training set consisting of the eight most
active ligands (pKi values of 3.00-0.50), a common partition
based on oxygen charges was not identified, nor was there
a consistency in atom types associated with interatomic
distances (data not shown). To illustrate how definitions of
biological similarity influence interpretations of chemical
similarity, training sets with six (pKi values of 3.00-0.96) or
four (pKi values of 3.00-1.82) ligands were also evaluated.
With training sets of six and four ligands, ‘oxygen’ windows
appeared in all reactivity patterns independent of the number
of partitions. Moreover, with this set of ligands and range of
binding affinity, the specificity of reactivity patterns based
on atomic charge increased with a decrease in the size of the
training set (i.e., with an increase in binding affinity), as noted
in Figures 5 and 6. In the analysis based on interatomic
distance, a consistency in distribution characteristics associ-
ated with training set size and partition number was also
observed. With six ligands in the training set, the largest
common distances ranged from 10.22 to 11.10 Å, from 10.66
to 11.10 Å, from 10.80 to 11.10 Å, and from 9.78 to 10.00 Å
for 10, 20, 30, and 40 partitions, respectively. With four
ligands, the distance ranges were 10.11-10.97Å, 10.54-10.97
Å, 10.68-10.97 Å, and 10.76-10.97 Å for 10, 20, 30, and 40
partitions, respectively. When using partitions of 20 or more,
the largest interatomic distance ranges included oxygen-
oxygen distances only. It must be stressed that these results
are specific to the training sets employed. Different defini-
tions of biological activity will result in different common
reactivity patterns.

Evaluation of Reactivity Patterns. An initial evaluation
of the ability of the algorithm to screen ‘unknown’ compounds
for AR binding affinity was obtained through an analysis of

9-21 in Table 1, none of which were used in evaluating
reactivity patterns of active compounds. These 13 com-
pounds were divided into two subsets to better illustrate the
characteristics of the screening approach. The first subset
included 9-13 (pKi values of -0.48 to -1.61) and was
represented by 45 conformers. The second subset was
comprised of 14-21 (pKi values of -2.00 to -2.70) and was
represented by 157 conformers.

A one-step screening was employed that simultaneously
incorporated charge and distance components of the reac-
tivity patterns. On the basis of the analyses described
previously, stable reactivity patterns for atomic charge and
interatomic distance could be discerned for the four- and
six-membered training sets. Using the six-membered training
set, reactivity patterns were defined to determine whether
ligands with pKi values less than 0.70 could be discriminated.
An interatomic distance range of 10.2-11.1 Å was identified
as a distance screen typically associated with oxygen-oxygen
distances between the A- and D-rings (based on 10 partitions).
Alternatively, a distance range of 10.7-11.1 Å, based on 20
partitions, could be viewed as a more restrictive range. The
common range of -0.333 to -0.303 au, analyzed with 20
partitions, was associated with hydroxyl and carbonyl oxygens
and assumed to be the less restrictive charge range. A range
of -0.333 to -0.313 au analyzed with 30 partitions and
associated with hydroxyl or carbonyl oxygens was incorpo-
rated as a more restrictive range.

With the simultaneous fulfilment of interatomic distance
and atomic charge criteria, the objective was to determine
whether or not the algorithm could discriminate ligands with
pKi values of less than -0.48 or -2.00 from those with pKi

values of 0.70 or greater. All distance and charge ranges were
assessed against ‘wildcard’ atoms in the validation sets (i.e.,
non-hydrogen atom types were not specified in the com-
pounds when performing the screens), even though these
parameter ranges were associated with oxygen-oxygen
distances and oxygen charges. Screens based on wildcard

FIGURE 6. Charge frequency (qi) distribution of the four most active androgens (pKi values g1.82; see Table 1) with 10 (a), 20 (b), 30 (c),
and 40 (d) partitions. Diagonal cross-hatch denotes ranges populated by at least one conformer from each ligand.
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atoms were undertaken to illustrate the ability of the algorithm
to assess similarity without the need to pre-determine a
pharmacophore or establish an alignment against a lead, or
template, molecule. Thus, the interatomic distances and
charges that were assessed in the screenings were not, for
example, specified to be hydroxyl or carbonyl oxygen, nor
was an automated or manual assignment of A- and/or D-ring
steroidal counterparts required.

After applying the least restrictive distance/charge re-
quirements (10.2-11.1 Å and -0.333 to -0.303 au) to the
first set of compounds (9-13), no conformers were identified,
consistent with the pKi values for these ligands. Employing
the more restrictive distance/charge requirement (10.7-11.1
Å and -0.333 to -0.313 au) to 14-21 resulted in the
identification of one conformer for 17 (pKi ) -2.70), i.e., an
incorrect prediction of a pKi of at least 0.70. However,
employing a reactivity pattern based on the four most active
ligands (with 30 partitions, 10.7-11.0Å and -0.324 to -0.304
au, based on hydroxyl oxygens) this compound was identified
as having a pKi less than 1.82.

Finally, the reactivity pattern-based screening approach
was assessed against a validation set comprised of the seven
compounds in Figure 2. The conformer generation routine
and subsequent quantum chemical optimization produced
132 conformers for the seven compounds (all within 20 kcal/
mol of the lowest energy geometries). All of these compounds
were properly discriminated using both the most and least
restrictive distance/charge requirements. Thus, all seven
compounds were identified as ligands likely to exhibit a pKi

binding affinity less than 0.70.
In contemplating the application of this approach with

large databases of 3-D structures, it is reasonable to assume
that only a single conformer per compound would be available
and that the generation of energetically-reasonable conform-
ers for each compound in an entire dataset would be
computationally impractical. In these situations, we envision
the use of an initial, less restrictive screening strategy that
assesses single conformers and that would be designed to
minimize the percentage of false negatives (i.e., compounds
incorrectly predicted to be below a specified threshold). A
prescreen based on the use of the ‘tweak’ technique (45) could
also be used to manipulate rotatable bonds in an attempt to
generate potentially active conformers from a single starting
conformation. A second series of more refined screens based
on sets of energetically-reasonable conformers, which requires
the more time-consuming conformational analyses, would
then be implemented. This type of an analogue search
strategy requires that the ‘stability’ of reactivity patterns be
carefully considered when selecting criteria for identifying
active compounds. The strengths and weaknesses of such
search strategies are currently being investigated.

Acknowledgments
This research was supported, in part, by a U.S. EPA Coopera-
tive Agreement (CR822306-01-0) with the Bourgas University
“As. Zlatarov”. O.M. acknowledges research grants from the
European Commission. The work has been accomplished in
the framework of a collaborative agreement between the U.S.
EPA and European Chemicals Bureau. Mention of models or
modeling approaches does not constitute endorsement on
the part of the U.S. EPA.

Supporting Information Available
Text, equations, and references describing the dynamic
similarity method as well as two tables that provide ranges
for stereoelectronic parameters for conformers of 1-21 and
torsional angles and non-bonded interatomic distances for
steroid derivatives (6 pp) will appear following these pages
in the microfilm edition of this volume of the journal.
Photocopies of the Supporting Information from this paper
or microfiche (105× 148 mm, 24× reduction, negatives) may

be obtained from Microforms Office, American Chemical
Society, 1155 16th St. NW, Washington, DC 20036. Full
bibliographic citation (journal, title of article, names of
authors, inclusive pagination, volume number, and issue
number) and prepayment, check or money order for $16.50
for photocopy ($18.50 foreign) or $12.00 for microfiche ($13.00
foreign), are required. Canadian residents add 7% GST.
Supporting Information is also available via the World Wide
Web at URL http://www.chemcenter.org. Users should select
Electronic Publications and then Environmental Science and
Technology under Electronic Editions. Detailed instructions
for using this service, along with a description of the file
formats, are available at this site. To download the Supporting
Information, enter the journal subscription number from your
mailing label. For additional information on electronic access,
send electronic mail to si-help@acs.org or phone (202)872-
6333.

Literature Cited
(1) Bradbury, S. P. SAR QSAR Environ. Res. 1994, 2, 89-104.
(2) Ankley, G. T.; Johnson, R. D.; Detenbeck, N. E.; Bradbury, S. P.;

Toth, G.; Folmar, L. C. Rev. Toxicol. 1997, 1, 231-267.
(3) Marshall, G. R. In 3D QSAR in Drug Design: Theory, Methods

and Applications; Kubinyi, H., Ed.; Escom: Leiden, 1993; pp
80-116.

(4) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc.
1988, 110, 5959-5967.

(5) Goodford, P. J. J. Med. Chem. 1993, 28, 849-857.
(6) Buchheit, K.-H.; Gamse, R.; Giger, R.; Hoyer, D.; Klien, F.;

Kloppner, E.; Pfannkuche, H.-J.; Mattes, H. J. Med. Chem. 1995,
38, 2326-2330.

(7) Hahn, M. J. Med. Chem. 1995, 38, 2080-2090.
(8) Hahn, M.; Rogers, D. J. Med. Chem. 1995, 38, 2091-2102.
(9) Kearsely, S. K.; Smith, G. M. Tetrahedron Comput. Methodol.

1990, 3, 615-633.
(10) Blaney, J. M.; Dixon, J. S. Perspect. Drug Design 1993, 1, 301-

319.
(11) Perkins, T. D.; Deam, P. M. J. Comput-Aided Mol. Design 1993,

7, 155-172.
(12) Martain, Y. C.; Bures, M. G.; Danahar, E. A.; DeLazzar, J.; Lico,

I.; Pavlik, P. A. J. Comput.-Aided Mol. Design 1993, 7, 83-102.
(13) Topliss, J. G.; Edwards, R. P. J. Med. Chem. 1979, 22, 1238-1244.
(14) Eliel, E. L. In Chemical Structures, Vol. I; Warr, W. A., Ed.;

Springer: Berlin, Germany, 1993; pp 1-8.
(15) Mekenyan, O. G.; Ivanov, J. M.; Veith, G. D.; Bradbury, S. P.

Quant. Struct.-Act. Relat. 1994, 13, 302-307.
(16) Mekenyan, O. G.; Veith, G. D.; Call, D. J.; Ankley, G. T. Environ.

Health Perspect. 1996, 104, 1302-1309.
(17) Bradbury, S. P.; Mekenyan, O. G.; Ankley, G. T. Environ. Chem.

Toxicol. 1996, 15, 1945-1954.
(18) Wiese, T,; Brooks, S. C. J. Steroid Biochem. Mol. Biol. 1994, 50,

61-72.
(19) Prendergast, K.; Adams, K.; Greenlee, W. J.; Nachbar, R. B.;

Patchett, A. A.; Underwood, D. J. J. Comput.-Aided Mol. Design
1994, 8, 491-512.

(20) Kavlock, R. J.; Daston, G. P.; DeRosa, C.; Fenner-Crisp, P. Gray,
L. E.; Kaatari, S.; Lucier, G.; Luster, M.; Mac, M. J.; Maczka, C.;
Miller, R.; Moore, J.; Rolland, R.; Scott, G; Sheehan, D. M.; Sinks,
T.; Tilson, H. A. Environ. Health Perspect. 1996, 104, 715-740

(21) Ivanov, J. M.; Karabunarliev, S. H.; Mekenyan, O. G. J. Chem. Inf.
Comput. Sci. 1994, 34, 234-243.

(22) Mekenyan, O. G.; Ivanov, J. M.; Karabunarliev, S. H.; Hansen, B.;
Ankley, G. T.; Bradbury, S. P. A new approach for estimating
three-demensional similarity that incorporates molecular flex-
ibility. In Proceedings of the 7th International Workshop on QSAR
in Environmental Sciences; Chen, F., Ed.; SETAC: Pensacola,
FL, 1997 (in press).

(23) Everitt, B. Cluster Analysis; Halstead-Heinemann: London, 1980.
(24) Jakes, S. E.; Willett, P. J. Mol. Graphics 1986, 4, 12-20.
(25) Pepperrell, C. A.; Willett, P. In Chemical Structures. The

International Language of Chemistry; Ware, W. A., Ed.; Springer:
Berlin, 1993; Vol. 2, pp 377-382.

(26) Good, A. C.; Ewing, T. J. A.; Gschwend, D. A.; Kentz, I. D. J.
Comput.-Aided Mol. Design 1995, 9, 1-12.

(27) Bures, M. G.; Martain, I. C.; Willett, P. In Topics in Stereochemistry;
Eliel, E. L., Wilen, S. H., Eds.; Wiley: New York, 1994; Vol. 1, pp
467-511.

(28) Holliday, J. D.; Ranade, S. S.; Willett, P. Quant. Struct.-Act. Relat.
1995, 14, 501-506.

3710 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 31, NO. 12, 1997



(29) Shannon, C.; Weaver, W. In The Mathematical Theory of
Communication; University of Illinois: Urbana, 1949.

(30) Kelce, W. R.; Monosson, E.; Gamasik, M. P.; Laws, S. C.; Earl, G.
L., Jr.; Toxicol. Appl. Pharmacol. 1994, 126, 276-285.

(31) Waller, C. L.; Juma, B. W.; Gray, E. L., Jr.; Kelce, W. R. Toxicol.
Appl. Pharmacol. 1996, 137, 219-227.

(32) Stewart, J. J. P. MOPAC: A general molecular orbital packages;
Version 7.0. Software; Quantum Chemistry Program Exchange
455; University of Indiana: Bloomington, IN, 1995.

(33) Busetta, B.; Courseille, C.; Hospital, G. M. Acta Crystallogr. B
1972, 28, 1349-1351.

(34) Bussetta, B.; Hospital, G. M. Acta Crystallogr. B 1972, 28, 560-
567.

(35) Anstead, G. M.; Carlson, K. E.; Katzenellenbogen, J. A. Steroids
1997, 62, 268-303.

(36) VanderKuur, J. A.; Wiese, T.; Brooks, S. C. Biochemistry 1993, 32,
7002-7008.

(37) Schuurmann, G. Quant. Struct.-Act. Relat. 1990, 59, 326-333.
(38) Mekenyan, O. G.; Karabunarliev, S. H.; Ivanov, J. M.; Dimitrov,

D. N. Comput. Chem. 1994, 18, 172-177.
(39) Mekenyan, O. G.; Veith, G. D. SAR QSAR Environ. Res. 1994, 2,

129-143.

(40) Mekenyan, O. G.; Peitchev, D.; Bonchev, D. G.; Trinajstić, N.;
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