Skip to main content
Article
High-Load Resistance Exercise Augments Androgen Receptor–DNA Binding and Wnt/β-Catenin Signaling without Increases in Serum/Muscle Androgens or Androgen Receptor Content
Nutrients (2020)
  • Thomas D. Cardaci, Baylor University
  • Steven B. Machek, Baylor University
  • Dylan T. Wilburn, Baylor University
  • Jeffery L. Heileson, Baylor University
  • Darryn S. Willoughby, University of Mary Hardin-Baylor
Abstract
The purpose of this study was (1) to determine the effect of single bouts of volume- and intensity-equated low- (LL) and high-load (HL) full-body resistance exercise (RE) on AR-DNA binding, serum/muscle testosterone and dihydrotestosterone, muscle androgen receptor (AR), and AR-DNA binding; and, (2) to determine the effect of RE on sarcoplasmic and nucleoplasmic β-catenin concentrations in order to determine their impact on mediating AR-DNA binding in the absence/presence of serum/muscle androgen and AR protein. In a cross-over design, 10 resistance-trained males completed volume- and intensity-equated LL and HL full-body RE. Blood and muscle samples were collected at pre-, 3 h-, and 24 h post-exercise. Separate 2 × 3 factorial analyses of variance (ANOVAs) with repeated measures and pairwise comparisons with a Bonferroni adjustment were used to analyze the main effects. No significant differences were observed in muscle AR, testosterone, dihydrotestosterone, or serum total testosterone in either condition (p > 0.05). Serum-free testosterone was significantly decreased 3 h post-exercise and remained significantly less than baseline 24 h post-exercise in both conditions (p < 0.05). In response to HL, AR-DNA binding significantly increased at 3 h post-exercise (p < 0.05), whereas no significant differences were observed at any time in response to LL (p > 0.05). Moreover, sarcoplasmic β-catenin was significantly greater in HL (p < 0.05) without significant changes in nucleoplasmic β-catenin (p > 0.05). In conclusion, increases in AR-DNA binding in response to HL RE indicate AR signaling may be load-dependent. Furthermore, despite the lack of increase in serum and muscle androgens or AR content following HL RE, elevations in AR-DNA binding with elevated sarcoplasmic β-catenin suggests β-catenin may be facilitating this response.
Keywords
  • androgen receptor,
  • β-catenin,
  • skeletal muscle,
  • cell signaling,
  • Wnt signaling,
  • hypertrophy,
  • resistance exercise,
  • testosterone,
  • dihydrotestosterone,
  • load
Disciplines
Publication Date
2020
DOI
10.3390/nu12123829
Citation Information
Thomas D. Cardaci, Steven B. Machek, Dylan T. Wilburn, Jeffery L. Heileson, et al.. "High-Load Resistance Exercise Augments Androgen Receptor–DNA Binding and Wnt/β-Catenin Signaling without Increases in Serum/Muscle Androgens or Androgen Receptor Content" Nutrients Vol. 12 Iss. 12 (2020)
Available at: http://works.bepress.com/steven-machek/16/