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Abstract
Despite widespread use of cognitive behavioral therapy (CBT) in clinical practice, its mechanisms with respect to brain
networks remain sparsely described. In this study, we applied tools from graph theory and network science to better
understand the transdiagnostic neural mechanisms of this treatment for depression. A sample of 64 subjects was included in a
study of network dynamics: 33 patients (15 MDD, 18 PTSD) received longitudinal fMRI resting state scans before and after
12 weeks of CBT. Depression severity was rated on the Montgomery-Asberg Depression Rating Scale (MADRS). Thirty-
one healthy controls were included to determine baseline network roles. Univariate and multivariate regression analyses
were conducted on the normalized change scores of within- and between-system connectivity and normalized change score
of the MADRS. Penalized regression was used to select a sparse set of predictors in a data-driven manner. Univariate
analyses showed greater symptom reduction was associated with an increased functional role of the Ventral Attention (VA)
system as an incohesive provincial system (decreased between- and decreased within-system connectivity). Multivariate
analyses selected between-system connectivity of the VA system as the most prominent feature associated with depression
improvement. Observed VA system changes are interesting in light of brain controllability descriptions: attentional control
systems, including the VA system, fall on the boundary between-network communities, and facilitate integration or
segregation of diverse cognitive systems. Thus, increasing segregation of the VA system following CBT (decreased
between-network connectivity) may result in less contribution of emotional attention to cognitive processes, thereby
potentially improving cognitive control.

Introduction

Cognitive behavioral therapy (CBT) is an effective treat-
ment for both major depressive disorder (MDD) and post-
traumatic stress disorder (PTSD) with equally efficacious
but more enduring effects compared with antidepressants
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[1–3]. The fact that various mental disorders involving
depression can be alleviated by CBT suggests that common
neural mechanisms may be engaged in treatment response.
However, there are no published studies investigating the
network mechanisms involved in transdiagnostic treatment
response to CBT common to both MDD and PTSD. Pre-
vious studies of brain mechanisms involved in producing
this improvement have focused on changes in cognitive
control regions in MDD [4–7] and in PTSD [8–11],
examined separately, following treatment. Studies examin-
ing neural substrates of CBT have demonstrated changes in
cognitive control regions following various forms of treat-
ment (reviewed in [4, 7]).

However, network-level effects of CBT are not well
understood. Some researchers have applied tools from
graph theory and network science to better understand the
neural mechanisms of depression treatment, given the
increased conceptualization of neuropsychiatric disorders as
involving large-scale functional network disorganization
[12–17]. Prior research, however, has examined the neu-
robiological signature of CBT either at a coarse level (i.e.,
focusing on global topological network features) or at a fine
level (i.e., focusing on a specific network). Thus, whether
and how the functional interactions between networks
within dynamic brain systems contributes to CBT treatment
response remains unknown.

A large literature describes a priori network baseline
differences in depression, including those in the affective
network, the cognitive control network, and the default
mode network, as well as interactions between them
[18–20]. In addition, abnormalities in the interconnecting
structures comprising these systems have been extensively
investigated (for reviews see [12, 21–23]). These studies
have examined abnormalities using a priori regions of
interest but have not conducted data-driven analyses. More
recent data-driven studies in depression have examined
baseline network properties, including loss of small-world
network structure [24] and a significant reorganization of
community structure [25–27]. Applications of a few simple
metrics from graph theory have provided conflicting results.
Some found decreased path length and no change in the
clustering coefficient, prominent changes in community
structure but no differences in path length and clustering
coefficient [25, 26], higher local efficiency and modularity
[27] or higher local efficiency and modularity as well as
disruptions in the nodal centralities of many brain regions,
particularly in the default mode and cognitive control sys-
tems [15]. These studies described features of baseline brain
network differences in untreated depression; however, they
did not examine treatment-associated changes. In the cur-
rent study, we used network science tools to identify
changes in network architecture and function across the
treatment time course.

Psychologically, CBT ameliorates depressive symptoms
by changing patterns of negative thinking and behaviors
[1, 28]. It has been proposed that correcting the imbalanced
communication among functional networks plays an
important role in the efficacy of CBT treatment responses
[29]. With advances in the network neuroscience field,
novel tools have been developed that allow a deeper
understanding of complex brain functions [30]. Using pre-
viously developed tools adapted from studies of airline
transportation networks and the Internet [31, 32] demon-
strated the emergence of system roles in normative neuro-
development. Specifically, they showed that development
of the functional brain organization is driven by changes in
the balance of within- versus between-module (or system)
connectivity. These tools allow network roles to be defined
based on the position of a module in the two-dimensional
plane mapped out by their within- and between-system
connectivity. (In the remainder of this paper, we use the
term “network” to mean a graph, and “system” to mean a
subset of brain regions in order to decrease the potential
confusion of using the term “network” to mean both
constructs.)

Here, we applied these network neuroscience tools to
resting-state fMRI data collected in a transdiagnostic sample
(including patients with primary MDD or PTSD) with
longitudinal treatment data. The overarching goal was to
understand neural correlates of depressive symptom
improvement following 12 weeks of manualized CBT
treatment across diagnoses. We hypothesized that changes
in functional roles of higher-order cognitive networks
(thereby putatively decreasing the saliency of emotional
signals) would be correlated with changes in depressive
symptoms. To confirm the results obtained in network
analyses, we also performed a parallel data-driven analysis
to select the network features that were most predictive of
depressive symptom improvement.

Methods and materials

Participants

Our initial sample included 95 participants—64 patients
(MDD: n= 21; PTSD: n= 43) who entered CBT treatment,
and 31 healthy controls included to delineate baseline net-
work functional roles. All participants were females, right-
handed, English-speaking, and aged 18–55 years. See
Table 1 for demographic characteristics. Inclusion diagnosis
for MDD and PTSD was established according to DSM-IV-
TR [33] and the Clinician Administered PTSD Scale
(CAPS) [34]. All PTSD participants had PTSD as the pri-
mary diagnosis. PTSD participants had a lifetime mean total
score on the CAPS of 78.16 ± 18.51. All PTSD participants
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reported interpersonal violence-based trauma (rape,
domestic violence, etc.); many reported multiple episodes
and episodes of longstanding duration. Exclusion criteria
included: (1) co-morbid neurological disorders; (2) current
alcohol or substance abuse disorder; (3) history of psychotic
disorder, bipolar disorder, or obsessive-compulsive dis-
order; (4) current suicide risk; (5) treatment with any psy-
chotropic or central nervous system-active drug within the
previous 3 weeks (5 weeks for fluoxetine). All participants
provided written informed consent; the Human Subjects
Committees of both Washington University and the Uni-
versity of Missouri-St. Louis approved all study procedures.

The baseline depressive symptom severity and treatment
response changes across diagnoses were assessed using the
clinician-administered Montgomery-Asberg Depression
Rating Scale (MADRS), a scale shown sensitive to symp-
toms change [35]. Among PTSD participants 21.95% had a
MADRS score ≥18. In addition to MADRS, the Anxious
Arousal (AA) subscale of the self-report Mood and Anxiety
Symptoms Questionnaire (MASQ) [36] was also adminis-
tered to control for the overlapping effect of anxiety with
depression and to test for the specificity of depression-
related results. Symptom and brain imaging data were
always collected on the same day. For the longitudinal
treatment, patients received 12 weeks of manualized psy-
chotherapy, either CBT for MDD or cognitive processing
therapy (CPT) for PTSD, delivered or supervised by the
same clinical psychologist (SEB), a highly-trained CBT
therapist. As defined by the APA Clinical Practice
Guidelines (http://www.apa.org/ptsd-guideline/treatments/
cognitive-processing-therapy.aspx): CPT is a specific type
of CBT that has been effective in reducing symptoms that
have developed after experiencing a variety of traumatic
events [9, 37–39].

For this dataset, we checked data quality before performing
any statistical analyses. Following data exclusions (see Sup-
plement), a longitudinal imaging sample of 15 patients with

MDD and 18 patients with PTSD with usable MRI scans at
two time points was included. PTSD participants were treated
at the Center for Trauma Recovery, University of Missouri-St.
Louis, and MDD participants were treated at Washington
University, St. Louis. All participants received their MRI
scans at Washington University. Patients (n= 33) and con-
trols (n= 31) did not differ in age (p > 0.20), though patients
had significantly lower education levels than controls [16.79
± 2.19 versus 15.39 ± 1.62; p= 0.01]. No patients were on
current psychotropics. Demographic information is available
in the Supplement.

Imaging data acquisition and preprocessing

Imaging was performed for all subjects on the same scanner
(Siemens 3T Trio) using the same acquisition protocol
(see Supplement). Preprocessing details of the T1 images
are described elsewhere [40]. Resting-state time series data
were processed using a validated confound regression pro-
cedure optimized to reduce the influence of subject motion
[41]. See the Supplement for further details about fMRI
preprocessing and motion correction.

Functional network construction

The nodes included were functionally defined in a separate
adult sample [42]. The original parcellation included 264
ROIs. To ensure the quality and interpretability of data, we
excluded 7 ROIs with poor coverage and 28 ROIs not
assigned to a specific network. To increase the stability
of network measures, we excluded small systems with
≤5 ROIs (cerebellum: n= 4 and memory retrieval: n= 5)
(see Supplement Methods and Figure S1 for justification of
this threshold. See Supplement Results for stability ana-
lyses). We further combined somatomotor mouth (n= 5)
with somatomotor hand into one motor network. Thus, our
final analyses included 220 nodes that belonged to

Table 1 Sample characteristics
Initial sample (n=95) Longitudinal subsample (n=54)

HC Patients HC Patients

MDD PTSD MDD PTSD

Sample size 31 21 43 21 15 18

Age (SD) 32.7 (9.32) 33.0 (8.73) 31.2 (10.1) 31.6 (9.87) 32.9 (7.71) 31.6 (11.1)

Education (SD) 16.7 (2.33) 15.0 (2.14) 15.1 (1.88) 17.1 (2.45) 15.4 (1.64) 15.4 (1.65)

MADRS (SD) 1.19 (1.91) 27.7 (6.38) 16.7 (8.64) 1.25 (2.55) 8.27 (7.66) 5.11 (4.50)

MASQ-AA (SD) 19.8 (3.36) 35.3 (12.3) 33.6 (9.92) 19.0 (2.68) 26.6 (9.45) 23.0 (5.76)

CAPS_m (SD) N/A N/A 69.1 (17.3) N/A N/A 19.2 (15.0)

MADRS Montgomery-Asberg Depression Rating Scale, MASQ-AA Anxious Arousal subscale of Mood and
Anxiety Symptoms Questionnaire, CAPS_m Clinician-Administered PTSD Scale past-month total, HC
healthy control subjects, MDD patients with major depressive disorder, PTSD patients with posttraumatic
stress disorder, SD standard deviation, N/A not applicable

2316 Z. Yang et al.

http://www.apa.org/ptsd-guideline/treatments/cognitive-processing-therapy.aspx
http://www.apa.org/ptsd-guideline/treatments/cognitive-processing-therapy.aspx


10 systems. Functional connectivity between these 220
ROIs was estimated using wavelet coherence in the typical
low-frequency range used for resting state data: 0.01–0.08
Hz (Fig. 1). A wavelet-based method was utilized based on
previous work introducing the approach of determining
module roles within the network [43] due to its advantages
over the Pearson’s correlation coefficient [25] (see Sup-
plement for further details).

For each subject, the functional brain network was
depicted by a fully weighted adjacency matrix in which
network nodes represented brain regions and network edges
represented functional connections between those regions.
To explore the full connectivity patterns related to mood
and anxiety disorders, we did not apply any arbitrary
thresholds to the functional connectivity matrix. To control
for residual effects of motion and other global effects
unaccounted for during preprocessing, we divided each
subject’s functional connectivity matrix by its average value
to obtain the normalized functional connectivity matrix
[44], which was used for the remainder of our analysis.

Roles of intrinsic functional networks

The functional role of each network depends on two
properties: the within-system connectivity and the between-
system connectivity [32]. Mathematically, the within-

system connectivity is defined as: Ri ¼
P

i;j2Ci
~Aij

Cij j2 . Between-

system connectivity is defined as: Ii ¼
P

i2Ci ;j=2Ci
~Aij

Cij j�ðN� Cij jÞ . Here,

eAis the weighted adjacency matrix normalized by its mean,
jCij is the size of the ith community, and N is the number of
nodes in total. These two measurements quantify the aver-
age strength of the within- and between-system

connectivity, producing a two-dimensional space that can
be divided into four quadrants or categories (Fig. 2a):
cohesive connector, cohesive provincial, incohesive con-
nector, and incohesive provincial [32]. The line that dif-
ferentiates cohesive systems from incohesive systems
represents the mean within-system connectivity across all
systems. The line that differentiates connector systems from
provincial systems represents the mean between-system
connectivity across all systems. Based on these definitions,
each system falls into one of the following four categories
(Fig. 2a): cohesive connector, cohesive provincial, incohe-
sive connector, and incohesive provincial [32]. No system
exists in more than one category.

Univariate analyses

To examine the neural correlates underlying depressive
symptom improvement following CBT, we examined how
changes in depressive symptoms relate to changes in net-
work roles of each system. Both change in MADRS and
change in network features (within- or between-system
connectivity) were quantified using a normalized score
defined as 100 × (postCBT-preCBT)/preCBT, yielding a
percent change. We performed partial correlations and
included age and head motion (quantified using mean fra-
mewise displacement) as covariates. The network role of a
given system was defined in a two-dimensional space (both
within- and between-system connectivity). We determined
the significance of the partial correlation in two dimensions
using a two-dimensional permutation test [32] and deter-
mined each dimension separately using a non-parametric
bootstrap approach. For the bootstrap, we first generated
1000 bootstrap sample by sampling 15 MDD and 18 PTSD
patients with replacement from the original data for each

Fig. 1 Functional network construction. The nodes we used were
defined in a separate adult sample (a: [42]). Functional connectivity
was estimated by applying a wavelet coherence to the ROI mean

BOLD signals between every pair of nodes in the range of 0.01–0.08
Hz. BOLD signal time series and the set of pairwise coherence values
were shown in b, c for an exemplar subject
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system. We then re-computed the partial correlation on the
bootstrapped sample to obtain a 95% confidence interval.
Multiple comparisons were adjusted for using the false
discovery rate (FDR) correction at a threshold of q= 0.05.
Specifically, we corrected for 10 tests for two-dimensional
analyses (one test/system) and for 20 tests for one-
dimensional analyses (10 tests for within-system con-
nectivity and 10 tests for between-system connectivity).

Specificity analyses

Because changes in depression and anxiety symptoms were
significantly correlated (r= 0.68, p < 0.001), we repeated
the above analyses by including changes in anxious arousal
(MASQ-AA score) as a covariate in addition to age and
head motion to test for the specificity of depressive
symptom-related results.

Multivariate analyses

In univariate analyses, we examined the brain-symptom
association for each system. Here, we confirmed the roles of
these systems by performing a multivariate regression ana-
lysis. Specifically, the normalized change scores of within-
and between-system connectivity of the ten systems together
with the change scores of the in-scanner head motion were
included as predictors. This process resulted in 21 pre-
dictors. The dependent variable was the normalized change
in MADRS score. Age was linearly regressed out from each
predictor and dependent variable before regression

modeling. We used linear regression with an elastic net
penalty [42, 45], which shrinks and selects a sparse set of
predictors. The elastic net penalty is a combination of the
LASSO penalty [46], which induces sparsity and a ridge
regression penalty [47], which reduces multicollinearity
among predictors. A grid search was conducted across
potential values of the penalty tuning parameters. The
optimal tuning parameters were selected by cross-validation,
as detailed further in the Supplement (Figure S2 and S3).

Results

Roles of intrinsic functional systems in healthy
controls

Before examining whether system role changes following
CBT were related to depression improvement, we first
defined the average functional roles of each system in
healthy controls. (see Fig. 2b, Table S1 for baseline func-
tional role delineation). We note that the relative location of
these systems is very similar to what was observed in a
previous study using the same method [32].

Brain-symptom association following CBT:
univariate analyses

Paired sample t-tests revealed that 12 weeks of CBT treat-
ment significantly improved patients’ depressive symptoms
assessed by MADRS [t(32)=−7.45; p < 0.001, d= 1.68;

Fig. 2 System functional roles in healthy controls in the current
sample. The two-dimensional space mapped out by the within- and
between-system connectivity were divided into four quadrants (a). The
lines demarcating the boundaries of the quadrants are defined by the
average within- and average between-system connectivity across all
systems. A system with high within- and high-between-system con-
nectivity was defined as cohesive connector; a system with high

within- and low-between-system connectivity was defined as a cohe-
sive provincial; a system with low within- and high-between-system
connectivity was defined as incohesive connector; and a system with
low within- and low-between-system connectivity was defined as
incohesive provincial. b displays the system functional roles of the
current healthy control sample (see Table S1 for within- and between-
system connectivity of each system)
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mean reduction relative to baseline: 64.15%], and anxious
arousal symptoms assessed using MASQ-AA [t(23)=
−2.98, p= 0.007, d= 0.88; mean reduction: 18.02%].
When we correlated system functional roles with symptom
changes we found that greater symptomatic improvement in
depression was associated with a greater increase in the
functional role of the VA system as an incoherent provincial
system (two-dimensional permutation test: p= 0.005, FDR
corrected). This effect is mainly driven by the decrease in
between-system connectivity (partial r= 0.71; p < 0.001,
FDR corrected, 95% confidence interval: [0.53, 0.86]).
Decrease in the within-system connectivity approached
significance (partial r= 0.49; p= 0.005; 95% confidence
interval: [0.09, 0.77]) (Fig. 3). Our specificity analyses
suggest that this brain–symptom association is specific to
depressive symptoms (see Supplement for detailed results).
No other systems showed significant associations with
symptom changes.

To better interpret our key finding that the changes in
depressive symptoms (normalized by baseline) were sig-
nificantly correlated with the changes in functional role of
the VA system in patients, we examined the baseline con-
nectivity differences between patients and controls using a

Fig. 3 The degree of depressive
symptom improvement was
associated with the level of
changes in system functional
roles of the ventral attention
(VA) system. The spatial
location of nodes belonging to
the VA system were shown on
the left lateral view in a.
Following CBT, the VA system
functional role change was
significantly associated with the
changes in depressive symptoms
measured using MADRS after
controlling for age and head
motion (b). Specifically, greater
improvement in depressive
symptoms was associated with
greater decrease in both within-
and between-system
connectivity of the VA system
(c). The VA system functions as
an incohesive provincial. Our
longitudinal results indicate that
further increase in the functional
role of the VA system as an
incohesive provincial (less
within- and less between-
network connectivity after CBT)
is associated with greater
symptom amelioration

Fig. 4 Model coefficients of predictors selected by the optimal (cross-
validated) elastic net regression. The magnitude of VA between-
system connectivity is much greater than all other predictors. The
direction of the coefficient indicates that greater improvement in
depressive symptoms was associated with greater decrease in between-
system connectivity of the VA network
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two-dimensional significance test. We found that the dis-
tance between patients and controls in the two-dimensional
space is not significant in any of the systems after FDR
correction (Figure S4). We also found that the overall VA
system functional role change following CBT is not sig-
nificant at the group level (p > 0.1). However, the changes
in between-system connectivity of the VA system sig-
nificantly differed between patients and controls [t(52)=
2.25, p= 0.03, d= 0.62], and marginally differed
in VA within-system connectivity [t(52)= 1.71, p= 0.09,
d= 0.49, suggesting that the connectivity change in patients
following CBT has an association with CBT.

Brain–symptom association following CBT:
multivariate analyses

The coefficients obtained from the elastic net regression are
shown in Fig. 4. To assess the significance of these asso-
ciations, we applied the Covariance test [48] which provides
inference that accounts for variable selection performed by
the elastic net. Following application of the Covariance test,
decreased between-system connectivity of the VA system
was the only variable significantly associated with symptom
improvement following CBT. Additional results, which are
provided in the Supplement (see Supplement Results, Fig-
ure S5, S6, and S7), showed non-significant associations
with CBT outcome. Finally, we note that the coefficient
associated with motion was near zero and non-significant
according to the Covariance test, suggesting that in-scanner
motion did not corrupt our results.

Discussion

Here we examined the effect of CBT on network organi-
zation to determine how the functional interaction between
functional systems contributes to CBT treatment response.
By extracting system-level network features for analysis, we
aimed to facilitate biological interpretability while reducing
the dimensionality of the imaging data more dramatically
than a region-level analysis would have acheived. Based on
the balance of within- vs. between-module connectivity, this
integrative approach maps the functional role in a two-
dimensional space and characterizes how a system interacts
with other systems. We find that the VA system tends to be
an incohesive provincial system at baseline and its func-
tional role does not differ between patients and controls.
However, individual differences in the change in functional
role of this system are behaviorally relevant and correlated
with the degree of symptom improvement. Using a data-
driven analysis, we determined a primary association
between decreases in between-system connectivity of the
VA system and reductions in MADRS following CBT. The

multivariate results were in agreement with the univariate
analysis, corroborating the key role of decreased VA
between-system connectivity in CBT treatment response.
This is in keeping with the known role of the VA system in
detecting higher-order salient stimuli [49], either subsuming
or overlapping with the salience system [50] and suggesting
that what is “salient” changes with treatment. These results
suggest that increased segregation of this network from
other systems may play an important role in the treatment
effect. Given the lack of baseline difference, the relationship
may reflect a compensatory rather than a restorative
mechanism.

One reason for interest in resting-state fMRI functional
connectivity (rs-FC) and techniques to probe its funda-
mental properties is the potential to identify a universal
intrinsic network architecture present across brain states.
Meta-analytic task activation studies have related task
activation patterns to rs-FC [51]. Interrogating a variety of
individual task states, other studies [52] found that the
actual task architectures (after regressing out task effects)
were very similar to the rs-FC architecture. While
approximately 25% of connections would still be changed
during task performance [49], rs-FC reflects the standard
state of the brain’s functional networks, common across
task performance, and provides an understanding of the
brain’s functional organization across a wide variety of
brain states.

Our findings of primary changes in the VA system are
interesting in light of a study describing brain structural
controllability. That study [43] found that attentional con-
trol systems, including the VA system, fall on the boundary
between-network communities and facilitate the integration
or segregation of diverse cognitive systems. In the current
study, the primary system realignment was a change in the
VA system towards increased segregation (e.g., decreased
between-system connectivity). By producing more system
segration, the resulting network relationships, including
those with the salience and subcortical systems, were more
isolated from attention to emotion, which could potentially
diminish the effect of low mood, anhedonia, irritability, and
rumination. Consistent with the idea of a baseline over-
active VA system [53], this system has been linked to
anxiety disorders, with increased stimulus-driven attention,
especially for emotionally-laden stimuli. Among children
with a history of anxiety or depression, the magnitude of the
VA system rs-FC was correlated with measures of attention
bias towards threat [54]. CBT has been shown to sig-
nificantly decrease bias towards threat [55], in keeping with
addressing an over-active VA system.

The multivariate results presented in this paper were
obtained by performing elastic net penalized regression
[45]. Elastic net regression has been increasingly used in
neuroimaging and psychiatry [56], in particular, to
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determine what brain regions are impacted by depression
[57] and to predict clinical outcomes [58, 59]. The findings
of the multivariate analysis are also important to under-
standing how CBT-related decrease of depression symp-
toms might work, since it allows potential simultaneous
contributions from multiple systems. In that analysis, the
VA between-system connectivity was by far the strongest
predictor of symptom changes (and the only significant
predictor following application of the Covariance Test),
validating the results of the univariate analysis.

Limitations

We note that our PTSD participants were all intimate
partner violence survivors and our results may not gen-
eralize to other PTSD populations. Further studies will be
necessary to explore the effects of population heterogeneity
on network changes in brain–behavior relationships. Fur-
thermore, the lack of an active control group limits our
interpretation of network changes as purely CBT-induced.
Other factors such as general clinician contact or illness
progression may also contribute to the changes in VA net-
work connectivity following treatment. However, changes
in between-system connectivity of the VA system in
patients significantly differed from controls, suggesting
these changes may related to CBT.

Another limitation is that the illness duration and history
of psychotropic medication were not recorded for our
patient group, although no patients were actively taking
medication during the study. Future investigations that
include these data will help to determine the potential
impact on treatment effect. Finally, our sample size is
relatively small and included heterogeneous patients, which
limited our power to conduct diagnosis specific analyses,
especially for small effect sizes. However, our transdiag-
nostic approach allows us to investigate the shared neural
substrate underlying CBT across MDD and PTSD. It is
essential for future work to replicate the current results with
a larger and more homogeneous sample.

Conclusions

We identified a common transdiagnostic change in network
structure underlying change in depressive symptoms across
MDD and PTSD. Our results demonstrate changes in
common across DSM categories following CBT and sup-
port the utility of a dimensional approach to identifying
treatment-associated brain–behavior links.
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