Association of Fibrosis Risk in HCV Patients with a Missense SNP in Gene CPT1A

H Huang
T L Wright
R C Cheung
T J Layden
O Tuason, et al.
Association of Fibrosis Risk in HCV Patients with a Missense SNP in Gene CPT1A

H. Huang¹, T. L. Wright², R. C. Cheung³, T. J. Layden⁴, O. Tuason¹, L. Yee², A. P. Chokkalingam¹, S. J. Schrodi¹, J. Chan¹, J. J. Catanese¹, D. U. Leong¹, R. Emerson², A. Monto², L. B. McAllister¹, J. J. Sninsky¹, M. L. Shiffman⁵

1. Celera Diagnostics, Alameda, California
2. University of California at San Francisco, California
3. Stanford University, California
4. University of Illinois, Chicago
5. Virginia Commonwealth University, Virginia
Natural History of HCV

- **Normal Liver**
- **Acute hepatitis C**
- **Recovery 15%**
- **Chronic hepatitis 85%**
- **Cirrhosis Up to 20%**
- **Hepatocellular Carcinoma 1-5%**

10 to 40+ years
Previously Identified Major Risk Factors

• Correlation with
 – Male gender (OR = 2.66)
 – Daily alcohol > 50 g (OR = 1.49)
 – Age > 40 at infection (OR = 1.08)
 – Steatosis

• No correlation with
 – HCV viral load or genotype
 – Cause of infection
 – Ethnicity

\[
\text{Very poor predictors for fibrosis}
\]

Hypothesis: other host factors, such as genetics, may play a role

Objectives

• To identify genetic markers which predict patients predisposing to developing liver fibrosis
Study Subjects

1,625 HCV Patients Enrolled

- **Discovery (N=537)**
 - UCSF Teresa L. Wright N = 537

- **Replication (N=698)**
 - VCU Mitchell L. Shiffman N = 483
 - Stanford Ramsey C. Cheung N = 100
 - UIC Thomas J. Layden N = 115

- **Validation (N=390)**
 - Sutter Natalie Bzowej N = 240
 - Ottawa Curtis Cooper N = 150
Fibrosis Enrollment Criteria

• Inclusion criteria
 – Adults (age 18 – 75)
 – Chronic HCV infection (HCV RNA positive)
 – Liver biopsy before any treatment

• Exclusion criteria
 – Other causes of chronic liver diseases (hepatitis B, Wilson’s disease, hemochromatosis, autoimmune hepatitis)
 – Co-infection with HIV
 – Hepatocellular carcinoma
<table>
<thead>
<tr>
<th></th>
<th>Discovery</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCSF</td>
<td>VCU</td>
</tr>
<tr>
<td># of patients</td>
<td>433 / 537</td>
<td>483</td>
</tr>
<tr>
<td>Gender (% Male)</td>
<td>83.7%</td>
<td>57.8%</td>
</tr>
<tr>
<td>Age</td>
<td>52.7</td>
<td>50.8</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>69.0%</td>
<td>70.6%</td>
</tr>
<tr>
<td>AA</td>
<td>14.5%</td>
<td>26.3%</td>
</tr>
<tr>
<td>Others</td>
<td>16.6%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Fibrosis stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>21.6%</td>
<td>17.4%</td>
</tr>
<tr>
<td>1</td>
<td>24.6%</td>
<td>34.2%</td>
</tr>
<tr>
<td>2</td>
<td>26.0%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16.8%</td>
<td>23.6%</td>
</tr>
<tr>
<td>4</td>
<td>11.0%</td>
<td>24.8%</td>
</tr>
<tr>
<td>mean</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Duration_infection</td>
<td>27.3</td>
<td>21.9</td>
</tr>
<tr>
<td>Fibrosis rate (Stage/Duration)</td>
<td>0.08</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Functional Genome Scan

> 20,000 SNPs

Cover 12,500 known and predicted genes (40% genome)

Botstein and Risch *Nature Genetics* 33, 228 (2003).
Association Study

Genome scan in DISCOVERY samples

\[P < 0.05 \text{ in discovery} \]

Primary hits

Genotype in REPLICATION samples

\[P < 0.05 \text{ in discovery and replication} \]

\(\sim 60 \) Replicated hits

CPT1A SNP (Ala175Thr)
Association of CPT1A A175T with Advanced Fibrosis

Major homozygote: CC
Carriers: CT TT

<table>
<thead>
<tr>
<th>Study</th>
<th>Genotype</th>
<th>Cases (Bridging Fib. or Cirrhosis)</th>
<th>Controls (Mild or No-fibrosis)</th>
<th>Adjusted for sex, ethnicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSF (N=537)</td>
<td>TT+TC CC</td>
<td>3.3%</td>
<td>11.2%</td>
<td>OR 0.3 (3.4) 95% CI 0.1 - 0.9 P 0.025</td>
</tr>
<tr>
<td>VCU (N=483)</td>
<td>TT+TC CC</td>
<td>8.5%</td>
<td>13.3%</td>
<td>OR 0.6 (1.7) 95% CI 0.3 - 1.1 P 0.044</td>
</tr>
<tr>
<td>Stanford (N=100)</td>
<td>TT+TC CC</td>
<td>0.0%</td>
<td>12.9%</td>
<td>OR 0.1 (10) 95% CI -inf - 1.0 P 0.023</td>
</tr>
<tr>
<td>UIC (N=115)</td>
<td>TT+TC CC</td>
<td>4.3%</td>
<td>4.3%</td>
<td>OR 0.8 (1.2) 95% CI 0.1 - 5.4 P 0.423</td>
</tr>
</tbody>
</table>

Combined P 0.004

- Adjusted for sex, ethnicity.
Carnitine Palmitoyl Transferase 1A (liver)

A Key Enzyme Regulating Fatty Acid Oxidation

1. What is the impact of A175T on fatty acid oxidation?
2. Is the association with fibrosis via steatosis – another risk factor?
Function of CPT1A A175T

1. A175T is not critical to the enzymatic activity of CPT1A*
2. A175T is not associated with steatosis grade in UCSF samples

Summary

• Conclusion
 – 1,625 HCV patients were enrolled from 6 centers
 – Functional genome scan was performed
 – SNP A175T in CPT1A was associated with decreased risk of advanced fibrosis in multiple sample sets
 – The association with fibrosis was not mediated by steatosis

• Future work
 – Investigate the mechanism of A175T in fibrogenesis pathway
Acknowledgements

Olivia Tuason
Jason Chan
Steve J. Schrodi
Anand P. Chokkalingam
Joseph J. Catanese
Diane U. Leong
Linda B. McAllister
John J. Sninsky
Thomas White

Scott Friedman

University of California, San Francisco
A PUBLIC UNIVERSITY DEDICATED TO SAVING LIVES AND IMPROVING HEALTH

Teresa L. Wright
Linda Yee
Rachael Emerson
Alexander Monto

VCU

Mitchell L. Shiffman

STANFORD UNIVERSITY

Ramsey C. Cheung

UIC

Thomas J. Layden