Skip to main content
Article
Optical Tomography for Media with Variable Index of Refraction
Cubo
  • Stephen R. McDowall, Western Washington University
Document Type
Article
Publication Date
1-1-2009
Keywords
  • Boltzmann equation,
  • Riemannian metric,
  • Transport equation
Disciplines
Abstract

Optical tomography is the use of near-infrared light to determine the optical absorption and scattering properties of a medium M ⊂ Rn. If the refractive index is constant throughout the medium, the steady-state case is modeled by the stationary linear transport equation in terms of the Euclidean metric and photons which do not get absorbed or scatter travel along straight lines. In this expository article we consider the case of variable refractive index where the dynamics are modeled by writing the transport equation in terms of a Riemannian metric; in the absence of interaction, photons follow the geodesics of this metric. The data one has is the measurement of the out-going flux of photons leaving the body at the boundary. This may be knowledge of both the locations and directions of the exiting photons (fully angularly resolved measurements) or some kind of average over direction (angularly averaged measurements). We discuss the results known for both types of measurements in all spatial dimensions.

Subjects - Topical (LCSH)
Optical tomography; Transport theory; Integral geometry; Inverse scattering transform
Genre/Form
articles
Type
Text
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Creative Commons License
Creative Commons Attribution-Noncommercial 3.0
Language
English
Format
application/pdf
Citation Information
Stephen R. McDowall. "Optical Tomography for Media with Variable Index of Refraction" Cubo Vol. 11 Iss. 5 (2009) p. 71 - 97
Available at: http://works.bepress.com/stephen_mcdowall/6/