Skip to main content
Article
Perfusion Pressure and Movement-Induced Hyperemia: Evidence of Limited Vascular Function and Vasodilatory Reserve with Age
Health and Human Physiological Sciences
  • H. Jonathan Groot
  • Joel D. Trinity
  • Gwenael Layec
  • Matthew J. Rossman
  • Stephen J. Ives, Skidmore College
  • Russell S. Richardson
Document Type
Article
Publication Date
1-1-2013
Keywords
  • Aging,
  • passive movement,
  • blood flow,
  • posture
Abstract

To better understand the mechanisms contributing to reduced blood flow with age, this study sought to elucidate the impact of altered femoral perfusion pressure (FPP) on movement-induced hyperemia. Passive leg movement was performed in 10 young (22 ± 1 yr) and 12 old (72 ± 2 yr) healthy men for 2 min, with and without a posture-induced change in FPP (~7 ± 1 ΔmmHg). Second-by-second measurements of central and peripheral hemodynamic responses were acquired noninvasively (finger photoplethysmography and Doppler ultrasound, respectively), with FPP confirmed in a subset of four young and four old subjects with arterial and venous catheters. Central hemodynamic responses (heart rate, stroke volume, cardiac output, mean arterial pressure) were not affected by age or position. The young exhibited a ~70% greater movement-induced peak change in leg blood flow (ΔLBF(peak)) in the upright-seated posture (supine: 596±68 ml/min; upright: 1,026 ± 85 ml/min). However, in the old the posture change did not alter ΔLBF(peak) (supine: 417±42 ml/min; upright: 412±56 ml/min), despite the similar increases in FPP. Similarly, movement-induced peak change in leg vascular conductance was ~80% greater for the young in the upright-seated posture (supine: 7.1 ± 0.8 ml·min(-1)·mmHg(-1); upright: 12.8 ± 1.3 ml·min(-1)·mmHg(-1)), while the old again exhibited no difference between postures (supine: 4.7 ± 0.4 ml·min(-1)·mmHg(-1); upright: 4.8 ± 0.5 ml·min(-1)·mmHg(-1)). Thus this study reveals that, unlike the young, increased FPP does not elicit an increase in movement-induced hyperemia or vasodilation in the old. In light of recent evidence that the majority of the first minute of passive movement-induced hyperemia is predominantly nitric oxide (NO) dependent in the young, these findings in the elderly may be largely due to decreased NO bioavailability, but this remains to be definitively determined.

Published In
American Journal of Physiology - Heart and Circulatory Physiology
Pages
H610-H619
DOI
10.1152/ajpheart.00656.2012
Citation Information
Groot HJ, Trinity JD, Layec G, Rossman MJ, Ives SJ, Richardson RS. Perfusion pressure and movement-induced hyperemia: evidence of limited vascular function and vasodilatory reserve with age. Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H610-9. doi: 10.1152/ajpheart.00656.2012. Epub 2012 Dec 21. PubMed PMID: 23262136; PubMed Central PMCID: PMC3566486.