Skip to main content
Continuous-Time Block-Oriented Adaptive on-Line Modeling for Time Varying Systems
AIChE Annual Meeting, Conference Proceedings
  • Derrick K. Rollins, Sr., Iowa State University
  • Stephanie Loveland, Iowa State University
Document Type
Conference Proceeding
AIChE 2005 Annual Meeting
Publication Version
Published Version
Publication Date
Conference Title
AIChE Annual Meeting
Conference Date
October 30 - November 4, 2005
(39.1031182, -84.51201960000003)
The development and maintenance of accurate predictive models for dynamic systems are highly challenged by system complexity, limited information (i.e., data), changing cross and time correlation structures and changing model parameters. Thus, for a model or modeling method to achieve long term success in implementation into a real system, it must be phenomenologically sound and adaptive, as well as being capable of immediate update from recently obtained process data (i.e., plant data). A model is phenomenologically sound when its structure accurately captures physical input and output relationships, and the stochastic behavior of process and measurement noise. On-line adaptive methods are critical to success because process variations that cause changes to noise correlation structures and model coefficients are frequent in real systems. A common occurrence in non-adaptive, off-line, model identification is the requirement of a new model by the time the model is ready for implementation due to significant process variations. For a method to have on-line adaptive abilities, it must be capable of using process data (which have a low signal to noise ratio, and limited range over the operating space) to update its fitting performance.

This is a proceeding from AIChE Annual Meeting, Conference Proceedings (2005): 6502. Posted with permission.

Copyright Owner
American Institute of Chemical Engineers
File Format
Citation Information
Derrick K. Rollins and Stephanie Loveland. "Continuous-Time Block-Oriented Adaptive on-Line Modeling for Time Varying Systems" Cincinnati, OHAIChE Annual Meeting, Conference Proceedings Vol. 2005 (2005) p. 6502 - 6503
Available at: