Contribution to Book
Probability of Obtaining a Pure Strategy Equilibrium in Matrix Games with Random Pay-offs
Game Theoretical Applications to Economics and Operations Research
(1997)
Abstract
If the pay-offs in an mXn zero-sum matrix game are drawn randomly from a finite set of number, N, then the probability of obtaining a pure strategy equilibrium, p, will be a weighted sum of the probabilities of obtaining a pure strategy equilibrium, ps, with s distinct payoffs, the weights, qs, being being the probabilities of obtaining s distinct payoffs from N. The paper also introduced the notion of separation of arrays, which is necessary and sufficient condition to be associated with a mixed strategy solution.
Keywords
- Mixed strategy,
- Pure strategy,
- Separation of arrays,
- Zero-sum
Publication Date
1997
Editor
T. Parthasarathy, B. Dutta, J. A. M. Potters, T. E. S. Raghavan, D. Ray and A. Sen
Publisher
Kluwer Academic Publishers
Series
Series C: Game Theory, Mathematical Programming and Mathematical Economics
ISBN
0-7923-4712-9
Citation Information
Srijit Mishra and T. Krishna Kumar. "Probability of Obtaining a Pure Strategy Equilibrium in Matrix Games with Random Pay-offs" Dordrecht, The NetherlandsGame Theoretical Applications to Economics and Operations Research (1997) Available at: http://works.bepress.com/srijit_mishra/17/