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Lucky Choice Number of Planar Graphs with Given Girth

Axel Brandt∗, Jennifer Diemunsch†, Sogol Jahanbekam‡

January 26, 2015

Abstract

Suppose the vertices of a graph G are labeled with real numbers. For each vertex v ∈ G,
let S(v) denote the sum of the labels of all vertices adjacent to v. A labeling is called lucky if
S(u) 6= S(v) for every pair u and v of adjacent vertices in G. The least integer k for which a
graph G has a lucky labeling from {1, 2, . . . , k} is called the lucky number of the graph, denoted
η(G). In 2009, Czerwiński, Grytczuk, and Żelazny [6] conjectured that η(G) ≤ χ(G), where
χ(G) is the chromatic number of G. In this paper, we improve the current bounds for particular
classes of graphs with a strengthening of the results through a list lucky labeling. We apply
the discharging method and the Combinatorial Nullstellensatz to show that for a planar graph
G of girth at least 26, η(G) ≤ 3. This proves the conjecture for non-bipartite planar graphs of
girth at least 26. We also show that for girth at least 7, 6, and 5, η(G) is at most 8, 9, and 19,
respectively.
Keywords: lucky labeling, additive coloring, reducible configuration, discharging method, Com-
binatorial Nullstellensatz.
MSC code: 05C78, 05C15, 05C22, 05C78.

1 Introduction

In this paper we only consider simple, finite, undirected graphs. For such a graph G, let V (G)
denote the vertex set and E(G) the edge set of G. When G is planar, let F (G) be the set of faces
of G and l(f) be the length of a face f . Unless otherwise specified, we refer the reader to [12] for
notation and definitions.

We consider a derived vertex coloring in which each vertex receives a color based on assigned
labels of its neighbors. Let ` : V (G) → R be a labeling of the vertices of a graph G. For each
v ∈ V (G), let SG(v) =

∑
u∈NG(v)

`(u), where NG(v) is the open neighborhood of v in G. When the

context is clear we use S(v) in place of SG(v). We say the labeling ` is lucky if for every pair of
adjacent vertices u and v, we have S(u) 6= S(v); that is S induces a proper vertex coloring of G.
The least integer k for which a graph G has a lucky labeling using labels from {1, . . . , k} is called
the lucky number of G, denoted η(G).

Determining the lucky number of a graph is a natural variation of a well–studied problem posed
by Karoński,  Luczak and Thomason [9], in which edge labels from {1, . . . , k} are summed at incident
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vertices to induce a vertex coloring. Karoński,  Luczak and Thomason conjecture that edge labels
from {1, 2, 3} are enough to yield a proper vertex coloring of graphs with no component isomorphic
to K2. This conjecture is known as the 1,2,3–Conjecture and is still open. In 2010, Kalkowski,
Karoński and Pfender [8] showed that labels from {1, 2, 3, 4, 5} suffice.

Similar to the lucky number of a graph, Chartrand, Okamoto, and Zhang [5] defined σ(G) to be
the smallest integer k such that G has a lucky labeling using k distinct labels. They showed that
σ(G) ≤ χ(G). Note that σ(G) ≤ η(G), since with η(G) we seek the smallest k such that labels are
from {1, . . . , k}, even if some integers in {1, . . . , k} are not used as labels, whereas σ(G) considers
the fewest distinct labels, regardless of the value of the largest label.

In 2009, Czerwiński, Grytczuk, and Żelazny proposed the following conjecture for the lucky
number of G.

Conjecture 1.1 ([6]). For every graph G, η(G) ≤ χ(G).

This conjecture remains open even for bipartite graphs, for which no constant bound is currently
known. Czerwiński, Grytczuk, and Żelazny [6] showed that η(G) ≤ k + 1 for every bipartite graph
G having an orientation in which each vertex has out-degree at most k. They also showed that
η(G) ≤ 2 when G is a tree, η(G) ≤ 3 when G is bipartite and planar, and η(G) ≤ 100, 280, 245, 065
for every planar graph G. Note that if the conjecture is true, then η(G) ≤ 4 for any planar graph
G. The bound for planar graphs was later improved to η(G) ≤ 468 by Bartnicki et al. [3], who also
show the following.

Theorem 1.2 ([3]). If G is a 3-colorable planar graph, then η(G) ≤ 36.

The girth of a graph is the length of its shortest cycle, which is especially useful in giving a
measure of sparseness. Knowing the girth of a planar graph gives a bound on the maximum average
degree of a graph G, denoted mad(G), which is the maximum average degree over all subgraphs
of G. The following proposition is a simple application of Euler’s formula (see [12]) and gives a
relationship between these two parameters.

Proposition 1.3. If G is a planar graph with girth g, then mad(G) < 2g
g−2 .

Bartnicki et al. [3] proved the following.

Theorem 1.4 ([3]). If G is a planar graph of girth at least 13, then η(G) ≤ 4.

In 2013, Akbari et al. [1] proposed the list version of lucky labeling. A graph is lucky k-choosable
if whenever each vertex is given a list of at least k available integers, a lucky labeling can be chosen
from the lists. The lucky choice number of a graph G is the minimum positive integer k such that
G is lucky k-choosable, and is denoted by η`(G). Akbari et al. [1] showed that η`(G) ≤ ∆2−∆ + 1
for every graph G with ∆ ≥ 2. They also proved the following.

Theorem 1.5 ([1]). If G is a forest, then η`(G) ≤ 3.

In this paper we improve these results for planar graphs of particular girths. Specifically, we
use the Combinatorial Nullstellensatz within reducibility arguments of the discharging method to
prove our results. The combination of these two popular techniques is a novel approach that can
eliminate a considerable amount of case analysis. Moreover, using the Combinatorial Nullstellensatz
in reducibility arguments of coloring problems enables proving choosability results, rather than just
colorability.

We show the following improvements on the lucky choice number for planar graphs of given
girths.
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Theorem 1.6. Let G be a planar graph with girth g.

1. If g ≥ 5, then η`(G) ≤ 19.

2. If g ≥ 6, then η`(G) ≤ 9.

3. If g ≥ 7, then η`(G) ≤ 8.

4. If g ≥ 26, then η`(G) ≤ 3.

Various 3–colorings of planar graphs have been obtained under certain girth assumptions. For
example, Grötzsch [7] proved that planar graphs with girth at least 4 are 3–colorable and Thomassen
[11] proved that planar graphs with girth at least 5 are 3–list–colorable. Combined with Grötzsch’s
result, our result answers Conjecture 1.1 for non-bipartite planar graphs with girth at least 26.

In Section 2 we introduce the notation and tools that are used throughout the remainder of
the paper. We also give an overview of how we use the discharging method and the Combinatorial
Nullstellensatz. Section 3 describes certain reducible configurations. Finally, in Section 4 we prove
Theorem 1.6.

2 Notation and Tools

Let NG(v) be the open neighborhood of a vertex v in a graph G. For convenience, a j–vertex,
j−–vertex, or j+–vertex is a vertex with degree j, at most j, or at least j, respectively. Similarly,
a j-neighbor (respectively j−–neighbor or j+–neighbor) of v is a j–vertex (respectively j−–vertex
or j+–vertex) adjacent to v.

For sets A and B of real numbers A⊕B is defined to be the set {a+b : a ∈ A, b ∈ B}. Likewise,
A	B is defined to be the set {a− b : a ∈ A, b ∈ B}. When B = ∅, we define A⊕B = A	B = A.
We use the following known result from additive combinatorics.

Proposition 2.1. Let A1, . . . , Ar be finite sets of real numbers. We have

|A1 ⊕ · · · ⊕Ar| ≥ 1 +
r∑

i=1

(|Ai| − 1) .

Proof. We apply induction on
r∑

i=1
|Ai|. When

r∑
i=1
|Ai| = 1, all but one Ai are empty, so we have

|A1 ⊕ · · · ⊕Ar| = 1, as desired.

Now suppose that
r∑

i=1
|Ai| = n. We may suppose that all Ai are nonempty. Let ai be the

minimum element of Ai for i ∈ {1, . . . , n}. Let A′1 = A1 − {a1}. By the induction hypothesis we

have |A′1 ⊕ A2 ⊕ · · · ⊕ Ar| ≥ 1 +
r∑

i=1
(|Ai| − 1) − 1. However |A1 ⊕ · · · ⊕ Ar| ≥ |{a1 + · · · + ar}| +

|A′1 ⊕A2 ⊕ · · · ⊕Ar|. Therefore |A1 ⊕ · · · ⊕Ar| ≥ 1 +
r∑

i=1
(|Ai| − 1).

Note that A⊕ (−B) is the same as A	B, where −B = {−b : b ∈ B}. This yields the following
known corollary.
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Corollary 2.2. Let A and B be nonempty sets of positive real numbers. We have |A 	 B| ≥
|A|+ |B| − 1.

Throughout, we consider when endpoints of edges need different sums to yield a lucky labeling.
For this reason, if we know S(u) 6= S(v) for an edge uv of G, we say that uv is satisfied ; uv is
unsatisfied otherwise.

Our proofs rely on applying the discharging method. This proof technique assigns an initial
charge to vertices and possibly faces of a graph and then distributes charge according to a list of
discharging rules. A configuration is k–reducible if it cannot occur in a vertex minimal graph G
with η`(G) > k. Note that any k–reducible configuration is also (k+ 1)–reducible. When applying
the discharging method in Theorem 4.5 we require the following known lemma, which is a simple
application of Euler’s Formula (see [12]).

Proposition 2.3. Given a planar graph G,∑
f∈F (G)

(l(f)− 4) +
∑

v∈V (G)

(d(v)− 4) = −8.

We also require a large independent set, which is given from the following theorem.

Theorem 2.4 ([10]). Every planar triangle-free graph on n vertices has an independent set of size

at least
n+ 1

3
.

The main tool we use to determine when configurations are k-reducible is the Combinatorial
Nullstellensatz, which is applied to certain graph configurations.

Theorem 2.5 (Combinatorial Nullstellensatz [2]). Let f be a polynomial of degree t in m variables
over a field F. If there is a monomial

∏
xtii in f with

∑
ti = t whose coefficient is nonzero in F,

then f is nonzero at some point of
∏
Ti, where each Ti is a set of ti + 1 distinct values in F.

3 Reducible Configurations

In the lemmas in this section, we let k ∈ N and introduce k–reducible configurations that will be
used to prove our main result. Let L : V (G) → 2R be a function on V (G) such that |L(v)| = k
for each v ∈ V (G). Thus L(v) denotes a list of k available labels for v. In each proof we take G
to be a vertex minimal graph with η`(G) > k. Then we define a proper subgraph G′ of G with
V (G′) ( V (G). By the choice of G, G′ has a lucky labeling ` such that `(v) ∈ L(v) for all v ∈ V (G′).
This labeling of G′ is then extended to a lucky labeling of G by defining `(v) for v ∈ V (G)−V (G′).
We discuss the details of this approach in Lemmas 3.1 and 3.2. The remaining lemmas are similar
in approach, so we include fewer details in the proofs.

Lemma 3.1. The following configurations are k–reducible in the class of graphs with girth at least
5.

(a) A vertex v with
∑

u∈N(v)

d(u) < k.

(b) A vertex v with r neighbors of degree 1 and a set Q of 2–neighbors {v1, . . . , vq} each having a
(k−1)−–neighbor other than v, say v′1, . . . , v

′
q, respectively, such that v′1, . . . , v

′
q are independent

and 1 + r(k − 1) +
∑

vi∈Q
(k − d(v′i)− 1) > d(v).
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Proof. Assume G is a vertex minimal graph with η`(G) > k containing the configuration described
in (a). Let G′ = G− {v}. Since G is vertex minimal, η`(G

′) ≤ k. Let ` be a lucky labeling from L
on V (G′). Our aim is to choose `(v) from L(v) to extend the lucky labeling of G′ to a lucky labeling
of G. Note that the only unsatisfied edges of G are those incident to neighbors of v. Let e be an
edge incident to a neighbor u of v. If e = uv, then e is satisfied when `(v) 6=

∑
w∈N(v)

`(w)−SG′(u). If

e = uw for some w 6= v, then e is satisfied when `(v) 6= SG′(w)−SG′(u). Thus picking `(v) distinct
from at most

∑
u∈N(v)

d(u) values ensures that all edges of G are satisfied. Since
∑

u∈N(v)

d(u) < k there

exists `(v) in L(v) that can be used to extend the lucky labeling of G′ to a lucky labeling of G.
Therefore η`(G) ≤ k, a contradiction.

Now assume G is a vertex minimal graph with girth at least 5 and η`(G) > k containing the
configuration described in (b). Let R be the set of r 1–neighbors of v. Let G′ = G− (R∪Q). Since
girth(G) ≥ 5, Q is independent. Therefore for each i ∈ {1, . . . , q} there are at least |L(vi)| − dG(v′i)
choices for `(vi) that ensure all edges incident to v′i are satisfied in G. Consider vw in E(G). If
w ∈ V (G′), vw is satisfied when

∑
x∈R∪Q

`(x) 6= SG′(w)− SG′(v). Also, if w ∈ R, then vw is satisfied

when
∑

x∈R∪Q
`(x) 6= `(v) − SG′(v). If w = vi for some vi ∈ Q, vw is satisfied when

∑
x∈R∪Q

`(x) 6=

`(v)+`(w)−SG′(v). Therefore, we must avoid at most d(v) values for
∑

x∈R∪Q
`(x) in order to satisfy

all edges incident to v. Recall that each vertex in R and Q have k and k−d(v′i) labels, respectively,
that avoid restricted sums. Proposition 2.1 guarantees at least 1 + r(k − 1) +

∑
vi∈Q′

(k − d(v′i) − 1)

available values for
∑
w∈R

`(w)+
∑
w∈Q

`(w). Since, by assumption, 1+r(k−1)+
∑

vi∈Q
(k−d(v′i)−1) > d(v),

there is at least one choice for `(w) for each w in R∪Q that completes a lucky labeling of G. Thus
η`(G) ≤ k, a contradiction.

Lemma 3.2. The following configurations are 8-reducible in the class of graphs of girth at least 6.

(a) A 6–vertex v having six 2-neighbors one of which has a 3−–neighbor.

(b) A 7–vertex v having seven 2-neighbors two of which have 4−–neighbors.

Proof. Let G be a vertex minimal graph of girth at least 6 with η`(G) > 8. To the contrary suppose
G contains the configuration described in (a). Let u be a 2–neighbor of v having a 3−–neighbor.
Let G′ = G − {u, v}. Let ` : V (G′) → R be a lucky labeling of G′ such that `(v) ∈ L(v) for each
v ∈ V (G).

The only unsatisfied edges of G are those incident to neighbors of u or v. To satisfy the
unsatisfied edges not incident to u or v, we avoid at most two values from L(u) and at most five
values from L(v). Note that |L(u)| ≥ 8 and |L(v)| ≥ 8. Thus there are at least six labels available
for u and at least three available for v. To satisfy the edges incident to u or v, `(u) − `(v) must
avoid at most seven values. Corollary 2.2 gives at least eight values for `(u) − `(v) from available
labels. Thus there are labels that complete a lucky labeling of G. Hence η`(G) ≤ 8, a contradiction.
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v

u1

u′1

u2

u′2

u3

u′3

u4

u′4

u5

u′5

u6

u′6

u7

u′7

w1w2w3w
′
1w

′
2w

′
3

Figure 1: An 8–reducible configuration.

Now, we prove part (b). To the contrary suppose G contains the configuration described in (b).
Let u1, . . . , u7 be the 2–neighbors of v whose other neighbors are u′1, . . . , u

′
7, respectively, where u′1

and u′2 are 4−–vertices. Since the most restrictions on labels occurs when d(u′1) = d(u′2) = 4, we
assume this is the case. Let N(u′1) − {u1} = {w1, w2, w3} and N(u′2) − {u2} = {w′1, w′2, w′3} (see
Figure 1). Consider G′ = G − {v, u1, u2}. Let ` : V (G′) → R be a lucky labeling of G′ such that
`(v) ∈ L(v) for each v ∈ V (G). The only unsatisfied edges of G are those incident to u′1, u

′
2, and

neighbors of v. The following function has factors that correspond to unsatisfied edges, where x,
y, and z represent the possible values of `(v), `(u1), and `(u2), respectively.

f(x, y, z) =

7∏
i=1

y + z +

7∑
j=3

`(uj)− x− `(u′i)

 · 7∏
i=3

(x+ `(u′i)− SG′(u′i))

·
3∏

i=1

(y + SG′(u
′
1)− SG′(wi)) ·

3∏
i=1

(z + SG′(u
′
2)− SG′(w′i))

· (x+ `(u′1)− y − SG′(u′1)) · (x+ `(u′2)− z − SG′(u′2))

The coefficient of x7y6z7 in f(x, y, z) is equal to its coefficient in (y + z − x)7x5y3z3(x− y)(x− z),
which is 490. By Theorem 2.5, there is a choice of labels for `(v), `(u1), and `(u2) from lists of size
at least 8 that make f nonzero. Thus these labels induce a lucky labeling of G. Hence η`(G) ≤ 8,
a contradiction.

Lemma 3.3. A configuration that is an induced cycle with vertices v1v2v3v4v5 such that d(v1) ≤ 17,
d(v2) = d(v5) = 2, d(v3) ≤ 7, and d(v4) ≤ 7 is 19–reducible.

v1v1v1

v2v2v2
v3v3v3

v4v4v4
v5v5v5

Figure 2: A reducible configuration.

Proof. Let G be a vertex minimal graph with η`(G) > 19. Suppose to the contrary that G contains
the configuration in Figure 2. Since the most restrictions on labels occurs when d(v1) = 17 and
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d(v3) = d(v4) = 7, we assume this is the case. Let G′ = G−{v2, v5}. Let ` : V (G′)→ R be a lucky
labeling of G′ such that `(v) ∈ L(v) for each v ∈ V (G). The unsatisfied edges are those incident to
v1, . . . , v5. The following function has factors corresponding to the unsatisfied edges where x2 and
x5 represent labels of v2 and v5, respectively.

f(x2, x5) =(SG′(v1) + x2 + x5 − `(v1)− `(v3)) · (`(v1) + `(v3)− x2 − SG′(v3))
· (x2 + SG′(v3)− x5 − SG′(v4)) · (x5 + SG′(v4)− `(v1)− `(v4))

· (`(v1) + `(v4)− x2 − x5 − SG′(v1)) ·
∏

w∈NG′ (v4)−{v3}

(SG′(w)− SG′(v4)− x5)

·
∏

w∈NG′ (v1)

(SG′(w)− SG′(v1)− x2 − x5) ·
∏

w∈NG′ (v3)−{v4}

(SG′(w)− SG′(v3)− x2)

The coefficient of x162 x
14
5 in f(x2, x5) is the same as x102 x

8
5 in −(x2 + x5)

17(x2 − x5), which is(
17
10

)
−
(
17
9

)
. Theorem 2.5 gives η`(G) ≤ 19, a contradiction.

Lemma 3.4. Let P (t2, . . . , tn−1) be the path v1 · · · vn such that for each i in {2, . . . , n − 1} the
vertex vi has ti 1–neighbors and d(vi) = 2+ti. The configurations P (1, 0, 1), P (1, 1, 1), P (1, 1, 0, 0),
P (0, 1, 0, 0), P (1, 0, 0, 0), and P (0, 0, 0, 0, 0) are 3–reducible.

v1 v2 v3 v4 v5

v6 v7

(a)

v1 v2 v3 v4 v5

v6 v7 v8

(b)

v1 v2 v3 v4 v5 v6

v7 v8

(c)

v1 v2 v3 v4 v5 v6

v7

(d)

v1 v2 v3 v4 v5 v6

v7

(e)

v1 v2 v3 v4 v5 v6 v7

(f)

Figure 3: Some 3–reducible configurations.

Proof. Let G be a vertex minimal graph with η`(G) > 3. We proceed as in earlier proofs presenting
the proper subgraph G′, the function f derived from the configuration, the monomial, and its
coefficient. In each function f , xi corresponds to the label of vi.

Suppose G contains P (1, 0, 1), see Figure 3a. Let G′ = G− {v3, v6, v7}.

f(x3, x6, x7) = (SG′(v1)− `(v1)− x3 − x6) · (`(v1) + x3 + x6 − `(v2))
· (`(v1) + x3 + x6 − `(v2)− `(v4)) · (`(v2) + `(v4)− SG′(v4)− x3 − x7)
· (`(v5) + x3 + x7 − `(v4)) · (`(v5) + x3 + x7 − SG′(v5))

The coefficient of x23x
2
6x

2
7 is 9.

Suppose G contains P (1, 1, 1), see Figure 3b. Let G′ = G− {v3, v6, v7, v8}.

f(x3, x6, x7, x8) = (SG′(v1)− `(v1)− x3 − x6) · (`(v1) + x3 + x6 − `(v2))
· (`(v1) + x3 + x6 − `(v2)− x7 − `(v4)) · (`(v2) + `(v4) + x7 − x3)
· (`(v2) + `(v4) + x7 − `(v5)− x3 − x8) · (`(v5) + x3 + x8 − `(v4))
· (`(v5) + x3 + x8 − SG′(v5))
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The coefficient of x23x
2
6x7x

2
8 is 15.

Suppose G contains P (1, 1, 0, 0), see Figure 3c. Let G′ = G− {v3, v4, v7, v8}.

f(x3, x4, x7, x8) = (x3 + x7 + `(v1)− SG′(v1)) · (x3 + x7 + `(v1)− `(v2))
· (x4 + x8 + `(v2)− x3 − x7 − `(v1)) · (x4 + x8 + `(v2)− x3)
· (x4 + x8 + `(v2)− x3 − `(v5)) · (x3 + `(v5)− x4 − `(v6)) · (x4 + `(v6)− SG′(v6))

The coefficient of x3x
2
4x

2
7x

2
8 is 8.

Suppose G contains P (0, 1, 0, 0), see Figure 3d. Let G′ = G− {v3, v4, v7}.

f(x3, x4, x7) = (SG′(v1)− `(v1)− x3) · (`(v1) + x3 − `(v2)− x7 − x4)
· (`(v2) + x7 + x4 − x3) · (`(v2) + x7 + x4 − x3 − `(v5))
· (x3 + `(v5)− x4 − `(v6)) · (x4 + `(v6)− SG′(v6))

The coefficient of x23x
2
4x

2
7 is 6.

Suppose G contains P (1, 0, 0, 0), see Figure 3e. Let G′ = G− {v3, v4, v7}.

f(x3, x4, x7) = (SG′(v1)− `(v1)− x3 − x7) · (`(v2)− `(v1)− x3 − x7)
· (`(v2) + x4 − `(v1)− x3 − x7) · (`(v2) + x4 − x3 − `(v5))
· (`(v6) + x4 − x3 − `(v5)) · (`(v6) + x4 − SG′(v6))

The coefficient of x23x
2
4x

2
7 is 7.

Suppose G contains P (0, 0, 0, 0, 0), see Figure 3f. Let G′ = G− {v3, v4, v5}.

f(x3, x4, x5) = (SG′(v1)− `(v1)− x3) · (`(v1) + x3 − `(v2)− x4) · (`(v2) + x4 − x3 − x5)
· (x3 + x5 − x4 − `(v6)) · (x4 + `(v6)− x5 − `(v7)) · (x5 + `(v7)− SG′(v7))

The coefficient of x23x
2
4x

2
5 is 7. Theorem 2.5 implies that these configurations are 3–reducible.

4 Proof of Main Results

Theorem 4.1. If G is a planar graph with girth(G) ≥ 5, then η`(G) ≤ 19.

Proof. Let G be a planar graph with girth at least 5 and suppose that G is vertex minimal with
η`(G) > 19. By Proposition 1.3, mad(G) < 10/3. Assign each vertex v an initial charge d(v), and
apply the following discharging rules.

(R1) Each 1–vertex receives 7/3 charge from its neighbor.

(R2) Each 2–vertex

(a) with two 8+–neighbors receives 2/3 charge from each neighbor.

(b) with a 4−–neighbor and a 15+–neighbor receives 4/3 charge from its 15+–neighbor.

(c) with a 10+–neighbor and a neighbor of degree 5, 6, or 7 receives 1 charge from its 10+–
neighbor and 1/3 charge from its other neighbor.

(R3) Each 3–vertex receives 1/3 charge from a 6+–neighbor.
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A contradiction with mad(G) < 10/3 occurs if the discharging rules reallocate charge so that
every vertex has final charge at least 10/3; we show that this is the case.

By Lemma 3.1 (a), each 1–vertex has a 19+–neighbor, 2–vertices have neighbors with degree
sum at least 19, and 3–vertices have at least one 6+–neighbor. Thus, by the discharging rules,
3−–vertices have final charge 10/3. Since 4–vertices neither give nor receive charge, they have final
charge 4.

Vertices of degree d with d ∈ {5, 6, 7} give charge when incident to 3−–vertices. By the discharg-
ing rules, they give away at most d/3 charge. This results in a final charge of at least d− d

3 = 2d
3 ≥

10
3 ,

since d ≥ 5.
Vertices of degree d with d ∈ {8, 9}. By Lemma 3.1 (a) each 9–vertex has at least one 3+–

neighbor. Also, each 8–vertex has at least two 3+–neighbors or at least one 4+–neighbor. By the
discharging rules, the final charge of any 9–vertex is at least 9− 8 · 23 −

1
3 = 10

3 and the final charge
of any 8–vertex is at least min{8− 6 · 23 − 2 · 13 , 8− 7 · 23} = 10

3 .
Vertices of degree d with d ∈ {10, 11}. By Lemma 3.1 (b), these vertices have no 2–neighbors

with a 7−–neighbor. Thus, these vertices have final charge at least d− 2d
3 = d

3 ≥
10
3 , since d ≥ 10.

Let v have degree d where d ∈ {12, 13, 14}. By Lemma 3.1 (b), v has no 2–neighbor with a
4−–neighbor. By Lemma 3.1 (b) and Lemma 3.3, v has at most two 2–neighbors each having a
7−–neighbor. By the discharging rules v has final charge at least d− 2(1)− (d− 2)

(
2
3

)
= d−2

3 ≥
10
3 ,

since d ≥ 12.
Similarly, by Lemma 3.1 (b) and Lemma 3.3 vertices of degree 15, 16, or 17 have at most one

2–neighbor with 7−–neighbors. Thus these vertices give at most 1(43) + (d − 1) · 23 charge. Hence

they have final charge at least d−2
3 ≥

13
3 , since d ≥ 15.

Finally, consider an 18+–vertex v of degree d. Let r be the number of 1–neighbors of v.
Let U = {u1, u2, . . . , uq} be the set of 2–neighbors of v. For each ui let N(ui) − {v} = {u′i}.
Let T = {u′i ∈ U : d(u′i) ≤ 7} and let |T | = t. Since G[T ] is planar with girth at least 5,
Theorem 2.4 guarantees at least t+1

3 vertices in T that form an independent set. By Lemma 3.1
(b), d ≥ 18r + 11( t+1

3 ) + 1. Thus

d ≥ 18r +
11

3
t+

14

3
. (1)

The final charge of v is at least d − 7
3r −

4
3 t −

2
3(d − r − t). Hence v has final charge at least

d
3 −

5
3r −

2
3 t. From (1), d

3 −
5
3r −

2
3 t ≥

13
3 r + 5

9 t + 14
9 . When r ≥ 1 or t ≥ 4, the final charge is at

least 10
3 . When r = 0 and t ≤ 3, the vertex v has final charge at least d− 4

3 t−
2
3(d− t) ≥ d−6

3 ≥
12
3 ,

since d ≥ 18.

Theorem 4.2. If G is a planar graph with girth(G) ≥ 6, then η`(G) ≤ 9.

Proof. LetG be a planar graph with girth at least 6 and supposeG is vertex minimal with η`(G) > 9.
By Proposition 1.3, mad(G) < 3. Assign each vertex v an initial charge of d(v) and apply the
following discharging rules.

(R1) Each 1–vertex receives 2 charges from its neighbor.

(R2) Each 2–vertex

(a) with one 8+–neighbor and one 5−–neighbor receives 1 charge from its 8+–neighbor.

(b) with one 7+–neighbor and one 4−–neighbor receives 1 charge from its 7+–neighbor.
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(c) with one 6+–neighbor and one 3−–neighbor receives 1 charge from its 6+–neighbor.

(d) receives 1/2 charge from each neighbor, otherwise.

A contradiction with mad(G) < 3 occurs if the discharging rules reallocate charge so that every
vertex has final charge at least 3; we show this is the case.

By Lemma 3.1 (a) each 1–vertex has a 9+–neighbor and each 2–vertex has neighbors with
degree sum at least 9. Under the discharging rules, 1–vertices and 2–vertices gain charge 2 and 1,
respectively, and 3–vertices neither gain nor lose charge. Thus, 3−–vertices have final charge 3.

By Lemma 3.1 (b) each 4–vertex v has no 1–neighbor and has at most one 2–neighbor whose
other neighbor is a 6−–vertex. Therefore each 4–vertex has final charge at least 4 − 1

2 . Similarly,
each 5–vertex has no 1–neighbor and has at most four 2–neighbors having another 7−–neighbor.
Therefore each 5–vertex has final charge at least 5− 4(12), as desired.

If v is a 6–vertex, then by Lemma 3.1, v has no 1–neighbor. Moreover, by Lemma 3.2, if v has
six 2–neighbors, at most one of them has a3−–neighbor. Hence v has charge at least 6−max{1 +
4(12), 6(12)}, which is 3 as desired.

Similarly by Lemma 3.1, a 7–vertex v has no 1–neighbor. Moreover, by Lemma 3.2, if v has
seven 2–neighbors, at most one of them has a 4−–neighbor. Thus v has charge at least 7−max{2+
4(12), 1 + 6(12), 7(12)}, which is at least 3 as desired.

Finally, if v is a d–vertex with d ≥ 8, then by Lemma 3.1 (b) we have

d ≥ 8r + 3q + 1, (2)

where r is the number of 1–neighbors and q is the number of 2–neighbors having a 5−-neighbor.
The final charge on v is at least d− 2r − q − 1

2(d− r − q) = d
2 −

3
2r −

1
2q. Thus by (2) v has final

charge at least 1
2(8r + 3q + 1) − 3

2r −
1
2q = 5

2r + q + 1
2 . When r ≥ 1 or q ≥ 3, this final charge is

at least 3. If r = 0 and q ≤ 2 then v has final charge at least d − 2 − 1
2(d − 2) = d−2

2 ≥ 3, since
d ≥ 8.

Theorem 4.3. If G is a planar graph with girth(G) ≥ 7, then η`(G) ≤ 8.

Proof. Let G be a planar graph with girth at least 7 and suppose G is a vertex minimal planar
graph with η`(G) > 9. By Proposition 1.3, mad(G) < 14/5. Assign each vertex v an initial charge
of d(v) and apply the following discharging rules.

(R1) Each 1–vertex receives 9/5 charge from its neighbor.

(R2) Each 2–vertex

(a) with one 3−–neighbor and one 6+–neighbor receives 4/5 charge from its 6+–neighbor.

(b) with one 3–neighbor and one 5–neighbor receives 1/5 and 3/5 charge, respectively.

(c) with two 4–neighbors receives 2/5 charge from each neighbor.

(d) with one 4–neighbor and one 5+–neighbor receives 1/5 and 3/5 charge, respectively.

(e) with two 5+–neighbors receives 2/5 charge from each neighbor.

A contradiction with mad(G) < 14/5 occurs if the discharging rules reallocate charge so that every
vertex has final charge at least 14/5; we show this is the case.
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By Lemma 3.1 (a) each 1–vertex has an 8+–neighbor and each 2–vertex has neighbors with
degree sum at least 8. Under the discharging rules, 1–vertices and 2–vertices gain 9/5 and 4/5
charge, respectively. If v is a 3–vertex, then by Lemma 3.1 (b), v has at most one 2–neighbor with
a 5–neighbor other than v. Thus v gives at most 1/5 charge. Hence, 3−–vertices have final charge
at least 14/5.

If v is a 4–vertex, then by Lemma 3.1 (b) v has at most one 2–neighbor with a 4−–neighbor
other than v. Thus v has final charge at least 4− 1

(
2
5

)
− 3

(
1
5

)
= 3.

If v is a 5–vertex, then by Lemma 3.1 (b) v has at most one 2–neighbor with a 4−–neighbor.
Thus v has final charge at least 5− 1

(
3
5

)
− 4

(
2
5

)
≥ 14

5 .
If v is a 6–vertex, then by Lemma 3.1 (b) v has at most one 2–neighbor with a 3−–neighbor,

and at most one 2–neighbor having a 4−–neighbor. Thus v has final charge at least 6 − 1
(
4
5

)
−

1
(
3
5

)
− 4

(
2
5

)
= 3.

If v is a 7–vertex, then by Lemma 3.1 (b) v has at most one 2–neighbor with a 3−–neighbor,
and has at most two 2–neighbors with a 4−–neighbor. Thus v has final charge at least 7− 1

(
4
5

)
−

2
(
3
5

)
− 4

(
2
5

)
= 17

5 .
If v is an 8–vertex, then by Lemma 3.1 (b) v has at most one 1–neighbors, at most two 2–

neighbors with a 3−–neighbor, and at most two 2–neighbors with a 4−–neighbor. Moreover,
if v has a 1–neighbor, then v does not have a 2–neighbor with a 3−–neighbor. Since the dis-
charging rules allocate charge to neighbors with these constraints, v has final charge at least
8−max

{
1
(
9
5

)
+ 7

(
2
5

)
, 2
(
4
5

)
+ 6

(
2
5

)}
= 17

5 .

If v is a d–vertex with d ≥ 9, then by Lemma 3.1 (b) v has at most d
8 1–neighbors, at most d

4

neighbors that are either a 1–vertex or a 2–vertex with a 3−–neighbor, and at most d
3 neighbors

that are either a 1–vertex or a 2–vertex with a 4−–neighbor. Since v gives more charge to neighbors
of low degree, we assume v has as many low degree neighbors as possible. Hence v has final charge
at least d− d

8

(
9
5

)
−
(
d
4 −

d
8

) (
4
5

)
−
(
d
3 −

d
4

) (
3
5

)
−
(
d− d

3

) (
2
5

)
= 43

120d, which is at least 3 since d ≥ 9.
Therefore, all vertices have final charge at least 14/5 and we obtain a contradiction.

We call a d-vertex lonely if it is in exactly one face of G. We say that a non–lonely 3+–vertex v
is unique to a face f of G if it is incident to a cut–edge uv such that d(u) > 1 and uv is also in f .

Lemma 4.4. Let f be a face in a planar graph G with ec cut–edges such that f has s lonely vertices,
and t 3+–vertices unique to f . We have s+ t

2 ≤ ec.

Proof. We apply induction on ec. If ec = 0, then s = t = 0 and the inequality holds. In the
following two cases, given some face f containing a cut–edge uv, let G′ be the graph obtained by
contracting the edge uv to a vertex w. Let f ′ be the face in G′ corresponding to f . Let s′ and t′

be the number of lonely vertices in f ′ and the number of 3+–vertices unique to f ′, respectively.
Case 1: u or v is lonely.

Without loss of generality assume u is lonely. If v is also lonely, then w is lonely and therefore
s′ = s− 1. If v is not lonely, then w is not lonely and still s′ = s− 1. Vertices unique to f are not
affected by the contraction, thus t′ = t. Since f ′ has ec − 1 cut–edges, by the induction hypothesis
s′ + t′

2 ≤ ec − 1. Therefore, s+ t
2 ≤ ec.

Case 2: u and v are unique to f .
Since u and v are not lonely, w is not lonely and s′ = s. After contracting uv, either w is unique
to f and t′ = t− 1 or w is not unique to f and t′ = t− 2, which yields t′ + 1 ≤ t ≤ t′ + 2. By the
induction hypothesis, s′ + t′

2 ≤ ec − 1. Since t ≤ t′ + 2, we have s+ t
2 ≤ ec, as desired.
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Theorem 4.5. If G is a planar graph with girth(G) ≥ 26, then η`(G) ≤ 3.

Proof. Let G be planar with girth at least 26 and suppose G is vertex minimal with η`(G) > 3.
Assign each vertex v an initial charge d(v), each face f an initial charge l(f), and apply the following
discharging rules.

(R1) Each 1-vertex receives 2 charges from its incident face and 1 charge from its neighbor.

(R2) Each 2-vertex receives 2 charges from its incident face if it is lonely; it receives 1 from each
incident face otherwise.

(R3) Each 3-vertex with a 1-neighbor and

(a) incident to two faces receives 1 charge from each incident face.

(b) incident to one face receives 2 charges from its face.

(R4) Each 3-vertex without a 1-neighbor and

(a) incident to three faces receives 1
3 charge from each incident face.

(b) incident to two faces receives 1
2 charge from each incident face.

(c) incident to one face receives 1 charge from its face.

(R5) Each 4-vertex that has a 1-neighbor and is

(a) incident to three faces receives 1
3 charge from each incident face.

(b) lonely or unique to some face f receives 1 charge from f .

(R6) Each 5-vertex that has two 1-neighbors and is

(a) incident to three faces receives 1
3 charge from each incident face.

(b) lonely or unique to some face f receives 1 charge from f .

A contradiction with Proposition 2.3 occurs if the discharging rules reallocate charge so that every
vertex and face has charge at least 4; we show this is the case.

By Lemma 3.1 (a) a 1–vertex has a 3+–neighbor. By Lemma 3.1 (b) a 4−–vertex has at most
one 1–neighbor, a 5–vertex has at most two 1–neighbors, and in general a d–vertex has at most
d−1
2 neighbors of degree 1. Since vertices only give charge to 1–neighbors, 6+–vertices have final

charge at least 4. Note that if v is a d–vertex with d ∈ {3, 4, 5}, at most d− 3 neighbors of degree
1, and incident to at most two faces, then v is unique to a face. Thus all vertices have final charge
at least 4 under the discharging rules.

We turn our attention to the final charge of faces. By Theorem 1.5 and the choice of G, G is
connected and each face contains at least one cycle. Therefore, each face has length at least 26.
Let Rf be the set of vertices incident to a face f that are either a 2–vertex or a 3–vertex that is
not lonely and has one 1–neighbor. Let f be a face with s lonely vertices, t unique vertices, and r
vertices in Rf . By Lemma 4.4 f has at least s+ t

2 cut edges. Thus,

l(f) ≥ 26 + 2s+ t. (3)
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A combination of the reducible configurations in Lemma 3.3 implies that there are at most four
consecutive vertices from Rf in any cycle of f . Thus

r ≤
⌊

4

5
(l(f)− 2s− t)

⌋
. (4)

By the discharging rules, f has final charge at least

l(f)− 2s− t− r − 1

3
(l(f)− 2s− t− r) =

2

3
l(f)− 4

3
s− 2

3
t− 2

3
r.

By (4),
2

3
l(f)− 4

3
s− 2

3
t− 2

3
r ≥ 2

3
l(f)− 4

3
s− 2

3
t− 2

3

⌊
4

5
(l(f)− 2s− t)

⌋
. (5)

Therefore the final charge of f is at least

2

3
l(f)− 4

3
s− 2

3
t− 2

3

(
4

5
(l(f)− 2s− t)

)
=

2

15
(l(f)− 2s− t),

which is at least 4 when l(f) − 2s − 5 ≥ 30. When l(f) ∈ {26, . . . , 29}, (5) gives final charge at
least 4.

Since [5] shows σ(Cn) = χ(Cn) for n ≥ 3 and σ(G) ≤ η(G), we have η(C2n+1) ≥ 3 for n ≥ 13.
By Theorem 4.5, we have the following immediate corollary.

Corollary 4.6. If n ≥ 13, then η`(C2n+1) = 3.
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