Weak Dynamic Coloring of Planar Graphs

Caroline Accurso ${ }^{1,5}$, Vitaliy Chernyshov ${ }^{2,5}$, Leaha Hand ${ }^{3,5}$, Sogol Jahanbekam ${ }^{2,4,5}$, and Paul Wenger ${ }^{2}$

Abstract

The k-weak-dynamic number of a graph G is the smallest number of colors we need to color the vertices of G in such a way that each vertex v of degree $d(v)$ sees at least $\min \{k, d(v)\}$ colors on its neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs have 3 -weak-dynamic number at most 6 .

Keywords: coloring of graphs and hypergraphs, planar graphs
MSC code: $05 \mathrm{C} 15,05 \mathrm{C} 10$.

1 Introduction

A proper coloring of G is a vertex coloring of G in which adjacent vertices receive different colors. The chromatic number of G, written as $\chi(G)$, is the smallest number of colors needed to find a proper coloring of G. For notation and definitions not defined here we refer the reader to [14].

A k-dynamic coloring of a graph G is a proper coloring of G in such a way that each vertex sees at least $\min \{\mathrm{d}(\mathrm{v}), \mathrm{k}\}$ colors in its neighborhood. The k-dynamic chromatic number of a graph G, written as $\chi_{k}(G)$, is the smallest number of colors needed to find an k-dynamic coloring of G. Dynamic coloring of graphs was first introduced by Montgomery in [11].

Montgomery [11] conjectured that $\chi_{2}(G) \leq \chi(G)+2$, for all regular graphs G. Montgomery's conjecture was shown to be true for some families of graphs including bipartite regular graphs [1], claw-free regular graphs [11], and regular graphs with diameter at most 2 and chromatic number at least 4 [2]. For all integers k, Alishahi [2] provided a regular graph G with $\chi_{2}(G) \geq \chi(G)+1$ and $\chi(G)=k$. In [3], Alishahi proved that $\chi_{2}(G) \leq 2 \chi(G)$ for all regular graphs G. Later Bowler et al. [6] disproved the Montgomery's conjecture by showing that Alishahi's bound is best possible. For all integers n with $n \geq 2$, they found a regular graph G with $\chi(G)=n$ but $\chi_{2}(G)=2 \chi(G)$. Other upper bounds have also been determined for the k-dynamic chromatic number of regular graphs and general graphs. See for example [3, 7, 9, 12].

In this paper we look at a weaker form of dynamic coloring in which we do not look at the constraint that the coloring must be proper. We refer to this type of coloring as a weak-dynamic coloring. Therefore a k-weak-dynamic coloring of a graph G is a coloring of the vertices of G in such a way that each vertex v sees at least $\min \{\mathrm{d}(\mathrm{v}), \mathrm{k}\}$ colors in its neighborhood. We define k-weak-dynamic number of G, written as $w d_{k}(G)$, to be the smallest number of colors needed to obtain a k-weak-dynamic coloring of G.

By an observation in [9] we have $\chi_{k}(G) \leq \chi(G) w d_{k}(G)$, because we can associate to each vertex of G an ordered pair of colors in which the first color comes from a proper coloring of G and the second color comes from a k-weak-dynamic coloring of G, to obtain a k-dynamic coloring of G.

A proper coloring of a hypergraph is a coloring of its vertices in such a way that each hyperedge sees at least two different colors. For a graph G, let H be the hypergraph with vertex set $V(G)$ whose edges are

[^0]the vertex neighborhoods in G. When $\delta(G) \geq 2$, any 2-weak-dynamic coloring of G corresponds to a proper coloring of H and vice versa.

In this paper we study weak-dynamic coloring of planar graphs. Kim et al. [10] proved that $\chi_{2}(G) \leq 4$ for all planar graphs G with no C_{5}-component. Note also that we can find a 2-weak-dynamic coloring of C_{5} using only 3 colors. Therefore the inequality $w d_{2}(G) \leq \chi_{2}(G)$ implies that all planar graphs have 2 -weak-dynamic coloring at most 4 . We also know that the upper bound 4 for the 2 -weak-dynamic coloring of planar graphs is best possible, as $w d_{2}(G)=4$ when G is a subdivision of K_{4}. Our aim in this paper is to obtain an upper bound for $w d_{3}(G)$ when G is a planar graph. We prove the following theorem.

Theorem 1. Any planar graph G satisfies $w d_{3}(G) \leq 6$.
In order to prove Theorem 1, we first study an edge-minimal counterexample G to the statement of the theorem. In Section 2 we provide some tools we need during our proofs. In Section 3 we determine some configurations that do not exist in G; we call these reducible configurations. In Section 4 we use the reducible configurations we obtain in Section 3 and the the tools we introduce in Section 2 to obtain a 3-weak-dynamic coloring of G using 6 colors, which gives us a contradiction showing that no counterexample exists.

2 Preliminary Tools

A d-vertex in G is a vertex of degree d in G. A d^{+}-vertex in G is a vertex of degree at least d in G and a d^{-}-vertex in G is a vertex of degree at most d in G. A d-neighbor of a vertex v in G is a neighbor of v having degree d. Similarly, d^{+}-neighbors of v have degree at least d, and d^{-}-neighbors of v have degree at most d. For a vertex $v, N_{G}(v)$ (or simply $N(v)$) is the set of neighbors of v in G. We define $N^{2}(v)$ to be the set of vertices in G having a common neighbor with v. Let c be a vertex coloring of G and $A \subseteq V(G)$. We define $c(A)$ to be the set of colors on vertices in A.

During the proof of Theorem 1, we correspond an edge-minimal counterexample graph G to an auxiliary graph H having the same vertex set as G but with different set of edges. We build H in such a way that any proper coloring of H corresponds to a 3 -weak-dynamic coloring of G. Hence for the rest of the proof, our aim would be to find a proper coloring of H using 6 colors. To fulfill the aim we use the following results on proper coloring of graphs and on planar graphs.

Theorem 2 (Four-Color Theorem, Appel and Haken [4]). Any planar graph has chromatic number at most 4.

Theorem 3 (Wagner's Theorem, Wagner [13]). A graph G is planar if and only if $K_{3,3}$ and K_{5} are not minors of G.

For each vertex v in a graph G, let $L(v)$ denote a list of colors available at v. A list coloring of G is a proper coloring f such that $f(v) \in L(v)$ for each vertex v of G. We say that G is L-choosable if it has a list coloring under L. We say that G is degree-choosable if G has a list coloring for all lists L with $|L(v)|=d(v)$. A graph G is 2 -connected if it is connected and the removal of any vertex from G leaves it connected. A block of G is a maximal 2-connected subgraph of G or a cut-edge. Not all graphs are degree-choosable. For example, odd cycles and complete graphs are not degree choosable. The following result classifies all graphs G that are degree-choosable.

Theorem 4 (Borodin [5] and Erdős, Rubin, and Taylor [8]). Let G be a connected graph having a block that is not an odd cycle nor a complete graph. The graph G is degree-choosable.

Theorem 4 implies the following Corollary.
Corollary 1. Let G be a connected graph and L be a list assignment on the vertices $x \in G$ such that $|L(x)| \geq d(x)$ for all x. If there each vertex $v \in V(G)$ such that $|L(v)|>d(v)$, then G is L-choosable.

Proof. Add a vertex u, an edge $u v$ to G, and add a pendant even cycle C to u in this graph. Give all vertices of C a list of size 3 and keep the list L on other vertices of G. Let H be the resulting graph and L^{\prime} be the list we defined on vertices of H. Since C is a block of H, by Theorem 4 the graph H is L^{\prime}-choosable, which implies that G is L-choosable.

The following propositions are known results on proper list coloring of complete graphs and odd cycles.
Proposition 1. Let L be a list assignment on the vertices of the complete graph K_{n} with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ in such a way that $\left|L\left(v_{i}\right)\right|=n-1$ for each i and $L\left(v_{1}\right) \neq L\left(v_{k}\right)$. The graph K_{n} is L-choosable.

Proof. First color v_{1} by a color in $L\left(v_{1}\right)-L\left(v_{n}\right)$. Now choose appropriate colors for vertices v_{2}, \ldots, v_{n-1} from their lists respectively in such a way that adjacent vertices get different colors. At each step the vertex v_{i} must have a color different from the color of at most $n-2$ other vertices. Having $\left|L\left(v_{i}\right)\right|=n-1$, we are able to choose these colorings. Finally since the color of v_{1} does not belong to $L\left(v_{n}\right)$, it is enough to choose a color for v_{n} to be a color in $L\left(v_{n}\right)$ and different from the colors of v_{2}, \ldots, v_{n-1} to obtain a proper coloring of K_{n}.

Proposition 2. Let L be a list assignment on the vertices of an odd cycle C with vertices v_{1}, \ldots, v_{k} so that $\left|L\left(v_{i}\right)\right|=2$ for each $i \in[k]$ and $L\left(v_{1}\right) \neq L\left(v_{k}\right)$. The cycle C is L-choosable.

Proof. First color v_{1} by a color in $L\left(v_{1}\right)-L\left(v_{k}\right)$. Now choose appropriate colors for vertices v_{2}, \ldots, v_{k-1} from their lists respectively in such a way that adjacent vertices get different colors. At each step the vertex v_{i} must have a color different from the color of v_{i-1}. Having $\left|L\left(v_{i}\right)\right|=2$, we are able to choose these colorings. Finally choose a color for v_{k} to be a color in $L\left(v_{k}\right)$ and different from the color of v_{k-1} to obtain a proper coloring of C.

The following Proposition is an excercie in [14].
Proposition 3. Let W be a closed walk of a graph G in such a way that no edge is repeated immediately in W. The graph G contains a cycle.

Proof. We prove the assertion by applying induction on the length of W. Note that such a closed walk W cannot have length 1 or 2 . If W has length 3 , then it is a triangle, which is a cycle, as desired. Now suppose W is a walk of length at least 4 in which no edge is repeated immediately. If there is no vertex repetition other than the first vertex, then W is a cycle, as desired. Hence suppose there is some other vertex repetition. Let W^{\prime} be the portion of W between the instances of such a repetition. In case we have several options for W^{\prime}, we choose one to be the shortest such portion. The walk W^{\prime} is a shorter closed walk than W and has the property that no edge is repeated immediately, since W has this property. By the induction hypothesis, the subgraph of G over the edges of W^{\prime} has a cycle, and thus G contains a cycle.

3 Reducible Configurations

To prove Theorem 1 we show that no counterexample exists to the statement of the theorem. Therefore we start by studying an edge-minimal counterexamples G of the theorem. If there are several such counterexamples, we choose G to be a graph with the smallest number of vertices.

During the proofs of the lemmas in this section, we look at a particular configuration that exists in G. We use deletion of edges and vertices, and sometimes contracting edges to obtain a new graph H with smaller number of edges than G. As a result, the graph H is not a counterexample any more. Hence $w d_{3}(H) \leq 6$. To obtain a contradiction, we use a 3-weak-dynamic coloring of H to find a 3-weak-dynamic coloring of G using 6 colors.

In a partial coloring of the vertices of a graph G, once a vertex has satisfied the requirements for a 3 -weak-dynamic coloring (it sees at least three different colors in its neighborhood) we say the vertex is satisfied.

In the following we determine a set of reducible configurations via different lemmas.

Lemma 1. The edge-minimal graph G with $w d_{3}(G)>6$ satisfies $\delta(G) \geq 2$. Moreover G has no 2 -vertex with a 3^{-}-neighbor.

Figure 1: A 2-vertex adjacent to a 3-vertex.
Proof. By the choice of G the graph G is connected. Therefore it has no isolated vertex. If G has a vertex u of degree 1 , then $w d_{3}(G-u) \leq 6$, as $G-u$ has fewer edges than G. Therefore there exists a 3 -weak-dynamic coloring of $G-u$ with colors $\{1, \ldots, 6\}$. Extend this coloring by giving u a color in $\{1, \ldots, 6\}$ that is different from two colors in the second neighborhood of u. This new coloring is a 3-weak-dynamic coloring of G, a contradiction. Hence $\delta(G) \geq 2$.

Now we prove that G has no 2 -vertex v_{1} having a 3^{-}-neighbor v_{2}. We prove $d\left(v_{2}\right)=3$ gives us a contradiction. The proof of the case that $d\left(v_{2}\right)=2$ is similar. Hence we suppose $d\left(v_{2}\right)=3$. Let $H=$ $G-\left\{v_{1} v_{2}\right\}$. Since H has fewer edges than G, by the choice of G we have $w d_{3}(H) \leq 6$. Therefore, there exists $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3 -weak-dynamic coloring of H. We recolor v_{1} and v_{2} in c to obtain a 3 -weak-dynamic coloring of G.

Let u_{1} be the other neighbor of v_{1} in G and let u_{2} and u_{3} be the other neighbors of v_{2} in G. Choose a color in $\{1, \ldots, 6\}$ for v_{1} that satisfies v_{2} and u_{1}. Satisfying v_{2} and u_{1} requires at most four restrictions. Therefore a desired color for v_{1} exists. Similarly, choose a color in $\{1, \ldots, 6\}$ for v_{2} to be different from $c\left(u_{1}\right)$ and to satisfy u_{2} and u_{3}. We have at most five restrictions for the coloring of v_{2}. With six available colors, a desired coloring for v_{2} exists. Hence this new coloring is a 3 -weak-dynamic coloring of G with six colors, which is a contradiction.

Lemma 2. The edge-minimal graph G with $w d_{3}(G)<6$ has no pair of adjacent vertices of degree at least 4.
Proof. Suppose $u v \in E(G)$ with $d(u), d(v) \geq 4$. By the choice of G, we have $w d_{3}(G-u v) \leq 6$. But any 3 -weak-dynamic coloring of $G-u v$ is also a 3-weak-dynamic coloring of G, so we obtain a contradiction.

Lemma 3. The edge-minimal graph G with $w d_{3}(G)>6$ does not contain distinct vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ such that $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{2} v_{5}, v_{3} v_{6} \in E(G), d\left(v_{1}\right) \geq 4, d\left(v_{4}\right) \geq 4$ and $d\left(v_{2}\right)=d\left(v_{3}\right)=d\left(v_{5}\right)=d\left(v_{6}\right)=3$

Figure 2: Adjacent 3-vertices with 3-neighbors and 4^{+}-neighbors.
Proof. On the contrary suppose G contains this configuration. Let $H=G-\left\{v_{2}, v_{3}\right\}$. Since H has fewer edges than G, we have $w d_{3}(H) \leq 6$. Thus there exists $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3 -weak-dynamic coloring of H. We use c to find a 3-weak-dynamic coloring of G. To obtain this new coloring, we first recolor $c\left(v_{5}\right)$ and $c\left(v_{6}\right)$ and then choose appropriate colors for v_{2} and v_{3}.

Let $N\left(v_{5}\right)=\left\{v_{2}, v_{5}^{\prime}, v_{5}^{\prime \prime}\right\}$ and $N\left(v_{6}\right)=\left\{v_{3}, v_{6}^{\prime}, v_{6}^{\prime \prime}\right\}$. By Lemma 1 , the vertices $v_{5}^{\prime}, v_{5}^{\prime \prime}, v_{6}^{\prime}, v_{6}^{\prime \prime}$ have degree at least 3 in G. We first redefine $c\left(v_{5}\right)$ to be a color in $\{1, \ldots, 6\}$ and different from $c\left(v_{1}\right)$, different from two distinct colors on $N\left(v_{5}^{\prime}\right)$, and different from two distinct colors on $N\left(v_{5}^{\prime \prime}\right)$. Since we require at most five restrictions for v_{5}, such a coloring for v_{5} exists. Next, we redefine $c\left(v_{6}\right)$ to to be a color in $\{1, \ldots, 6\}$ and different from $c\left(v_{4}\right)$, different from two distinct colors on $N\left(v_{6}^{\prime}\right)$, and different from two distinct colors on $N\left(v_{6}^{\prime \prime}\right)$. Since we require at most five restrictions for v_{6}, such a coloring for v_{6} exists. We have not colored v_{2} and v_{3} yet, but we know that vertices v_{1} and v_{4} are already satisfied, because they have degree at least 3 in H and they are satisfied in H.

We then choose $c\left(v_{2}\right)$ to be a color in $\{1, \ldots, 6\}$ different from $c\left(v_{4}\right), c\left(v_{6}\right), c\left(v_{5}^{\prime}\right), c\left(v_{5}^{\prime \prime}\right)$. Since we have four restrictions for $c\left(v_{2}\right)$, such a coloring for v_{2} exists. Last, we choose $c\left(v_{3}\right)$ to differ from $c\left(v_{1}\right), c\left(v_{5}\right), c\left(v_{6}^{\prime}\right), c\left(v_{6}^{\prime \prime}\right)$. Therefore we obtain a 3 -weak-dynamic coloring of G using six colors, which is a contradiction.

Lemma 4. The edge-minimal graph G with $w d_{3}(G)>6$ does not contain a 3-face with vertices v_{1}, v_{2}, v_{3} adjacent to a 3 -face with vertices v_{1}, v_{3}, v_{4}, where $d\left(v_{1}\right)=d\left(v_{3}\right)=3$.

Figure 3: Two adjacent triangles.
Proof. On the contrary suppose G contains this configuration. Contract the edge $v_{1} v_{3}$ into a single vertex $v_{1,3}$ and let H be the resulting graph. Since H has fewer edges than G, it follows that $w d_{3}(H) \leq 6$. Therefore there exists $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3-weak-dynamic coloring of H. To obtain a contradiction, we use c to find a 3-weak-dynamic coloring of G. Note that the neighbors of the vertex $v_{1,3}$ in H are v_{2} and v_{4}, therefore we know $c\left(v_{2}\right) \neq c\left(v_{4}\right)$.

By Lemma 1 , we have $d_{G}\left(v_{2}\right) \geq 3$ and $d_{G}\left(v_{4}\right) \geq 3$. First suppose that $d_{G}\left(v_{2}\right) \geq 4$ and $d_{G}\left(v_{4}\right) \geq 4$. In this case each of the vertices v_{2} and v_{4} has degree at least 3 in H. Hence v_{2} sees at least three different colors on its neighborhood in H. As a result, v_{2} sees at least two different colors on $N_{H}\left(v_{2}\right)-\left\{v_{1,3}\right\}$. Let's call these two colors c_{1} and c_{2}. Similarly, suppose c_{3} and c_{4} are two different colors that appear on $N_{H}\left(v_{4}\right)-\left\{v_{1,3}\right\}$. We use the coloring of c over $V(H)-\left\{v_{1,3}\right\}$ and then extend it to a 3-weak-dynamic coloring of G.

Choose $c\left(v_{1}\right)$ to be a color in $\{1, \ldots, 6\}-\left\{c\left(v_{2}\right), c\left(v_{4}\right), c_{1}, c_{2}\right\}$. Then choose $c\left(v_{3}\right)$ to be a color in $\{1, \ldots, 6\}-\left\{c\left(v_{2}\right), c\left(v_{4}\right), c_{3}, c_{4}\right\}$. The coloring v_{1} is in such a way that the vertex v_{2} gets satisfied and the coloring of v_{3} is picked in such a way that v_{4} becomes satisfied. Since the neighbors of v_{1} get different colors and the neighbors of v_{3} get different colors, this extension is indeed a 3 -weak-dynamic coloring of G.

Now suppose that $d_{G}\left(v_{2}\right)=3$. Let c_{1} be the color of the neighbor of v_{2} in H that is different from $v_{1,3}$. We use the coloring of c over $V(H)-\left\{v_{1,3}\right\}$ and then extend it to a 3 -weak-dynamic coloring of G.

Let c_{2} and c_{3} be colors on $N_{H}\left(v_{4}\right)-v_{1,3}$. We choose c_{2} to be different from c_{3}, when $d_{G}\left(v_{4}\right) \geq 4$. Otherwise $c_{2}=c_{3}$. Now choose $c\left(v_{3}\right)$ to be a color in $\{1, \ldots, 6\}-\left\{c\left(v_{2}\right), c\left(v_{4}\right), c_{1}, c_{3}, c_{4}\right\}$. Then choose $c\left(v_{1}\right)$ to be a color in $\{1, \ldots, 6\}-\left\{c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{4}\right), c_{1}, c_{3}\right\}$. These assignments satisfy the vertices v_{2} and v_{4}. Since the neighbors of v_{1} get different colors and the neighbors of v_{3} get different colors, this extension is a 3 -weak-dynamic coloring of G.

Lemma 5. The edge-minimal graph G with $w d_{3}(G)>6$ does not contain a triangle with vertices v_{1}, v_{2}, v_{3}, where $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=3$.
Proof. On the contrary suppose G contains this configuration. For each i, let $N_{G}\left(v_{i}\right)-\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{v_{i}^{\prime}\right\}$. By Lemma 4 the vertices $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$ are distinct. Let $H=G-\left\{v_{1}, v_{2}, v_{3}\right\}$. Since H has fewer edges than G, we have $w d_{3}(H) \leq 6$. Thus there exists $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3-weak-dynamic coloring of H. We use c to find a 3 -weak-dynamic coloring of G. By Lemma 1 we have $d_{G}\left(v_{1}^{\prime}\right) \geq 3, d_{G}\left(v_{2}^{\prime}\right) \geq 3$, and $d_{G}\left(v_{3}^{\prime}\right) \geq 3$. We consider two cases.

Case 1: $d_{G}\left(v_{1}^{\prime}\right)=d_{G}\left(v_{2}^{\prime}\right)=d_{G}\left(v_{3}^{\prime}\right)=3$. Let $N_{G}\left(v_{i}^{\prime}\right)-\left\{v_{i}\right\}=\left\{w_{i}, w_{i}^{\prime}\right\}$. We recolor $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$ and find appropriate colors for v_{1}, v_{2}, v_{3}. We will call the set of vertices that we plan to color or recolor S. Thus, $S=\left\{v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$.
Now we study the restrictions we must consider for the coloring on S to make sure that a 3-weakdynamic coloring of G is obtained. We must choose $c\left(v_{1}^{\prime}\right)$ to be a color different from $c\left(v_{2}\right), c\left(v_{3}\right)$, as well as two distinct colors in $N_{G}\left(w_{1}\right)-\left\{v_{1}^{\prime}\right\}$, and also two distinct colors in $N_{G}\left(w_{1}^{\prime}\right)-\left\{v_{1}^{\prime}\right\}$. Similarly, $c\left(v_{2}^{\prime}\right)$ must be a color different from $c\left(v_{1}\right), c\left(v_{3}\right)$, and at most four other colors from vertices outside of S, and $c\left(v_{3}^{\prime}\right)$ must be a color different from $c\left(v_{1}\right), c\left(v_{2}\right)$, and at most four other colors from vertices outside of S.
We must also choose $c\left(v_{1}\right)$ to differ from $c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{2}^{\prime}\right), c\left(v_{3}^{\prime}\right)$ and also different from $c\left(w_{1}\right)$ and $c\left(w_{1}^{\prime}\right)$. Similarly, $c\left(v_{2}\right)$ must be different from $c\left(v_{1}\right), c\left(v_{3}\right), c\left(v_{1}^{\prime}\right), c\left(v_{3}^{\prime}\right)$ and also different from $c\left(w_{2}\right), c\left(w_{2}^{\prime}\right)$, and $c\left(v_{3}\right)$ must be different from $c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{1}^{\prime}\right), c\left(v_{2}^{\prime}\right), c\left(w_{3}\right), c\left(w_{3}^{\prime}\right)$.
For each vertex u in S let $R(u)$ be the set of those colors we need to avoid for $c(u)$ that come from vertices outside S. By the above argument we have $|R(u)| \leq 2$ when $u=v_{i}$ and $|R(u)| \leq 4$ when $u=v_{i}^{\prime}$ for each i. For each vertex u in S define $L(u)=\{1, \ldots, 6\}-R(u)$.
Now we form a graph D that represents the dependencies among the vertices of $S . D$ has vertex set S. Two vertices of S are adjacent in D if we require them to have different colors.
First suppose that no pair of vertices in $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ have a common neighbor. See Figure 4. In this case, in D each v_{i} has degree 4 and each v_{i}^{\prime} has degree 2 . Consider the list of colors $L(u)$ we defined on each vertex u of S. Each vertex u has a list of size at least its degree in D. Note that D has one component which is 2 -connected and it is not an odd cycle or a complete graph. Therefore by Theorem 4 the graph D is L-choosable. Such a coloring for the vertices of S extends c over $H-S$ to a 3 -weak-dynamic coloring of G.
If one or the three pair of vertices in $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ have common neighbors in G, then in D we will have one, two, or the three edges $v_{1}^{\prime} v_{2}^{\prime}, v_{1}^{\prime} v_{3}^{\prime}, v_{2}^{\prime} v_{3}^{\prime}$ present, while still each vertex has a list of size at least its degree. Similar to the above argument, Theorem 4 implies that D is L-choosable, as desired.

Figure 4: A triangle with all 3-vertices.

Case 2: $d_{G}\left(v_{1}^{\prime}\right) \geq 4$.
Since $d_{G}\left(v_{1}^{\prime}\right) \geq 4$, we have $d_{H}\left(v_{1}^{\prime}\right) \geq 3$. Hence under the coloring c in H, the vertex v_{1}^{\prime} sees at least three different colors on its neighborhood. Therefore when trying to extend the coloring c to a 3 -weakdynamic coloring of G, the vertex v_{1}^{\prime} is already satisfied. In this case we keep the colors on all vertices of H. We then choose $c\left(v_{1}\right), c\left(v_{2}\right)$, and $c\left(v_{3}\right)$ to extend c to a 3 -weak-dynamic coloring of G.
First choose $c\left(v_{2}\right)$ to be a color in $\{1, \ldots, 6\}$ that is different from $c\left(v_{1}^{\prime}\right), c\left(v_{3}^{\prime}\right)$, and different from two distinct colors on vertices in $N_{G}\left(v_{2}^{\prime}\right)-\left\{v_{2}\right\}$. We then choose $c\left(v_{3}\right)$ to be a color in $\{1, \ldots, 6\}$, different
from $c\left(v_{2}\right), c\left(v_{1}^{\prime}\right)$, and $c\left(v_{2}^{\prime}\right)$, and different from two distinct colors on vertices in $N_{G}\left(v_{3}^{\prime}\right)-\left\{v_{3}\right\}$. Finally, considering the fact that v_{1}^{\prime} is already satisfied, we choose $c\left(v_{1}\right)$ to be a color in $\{1, \ldots, 6\}$ and different from $c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{1}^{\prime}\right)$, and $c\left(v_{2}^{\prime}\right)$. It is easy to see that this extension provides a 3 -weak-dynamic coloring of G, which is a contradiction.

Lemma 6. The edge-minimal graph G with $w d_{3}(G)>6$ contains no triangle with vertices v_{1}, v_{2}, v_{3} adjacent to a triangle with vertices v_{1}, v_{3}, v_{4} such that $d\left(v_{2}\right)=d\left(v_{3}\right)=d\left(v_{4}\right)=3$ and $d\left(v_{1}\right) \geq 4$.

Figure 5: Two adjacent triangles.
Proof. On the contrary suppose G contains this configuration. Let $N_{G}\left(v_{2}\right)=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $N_{G}\left(v_{4}\right)=$ $\left\{v_{1}, v_{3}, v_{6}\right\}$. Let $H=G-\left\{v_{3}\right\}$. Since H has fewer edges than G, we have $w d_{3}(H) \leq 6$. Therefore, there exists $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3 -weak-dynamic coloring of H. To find a 3 -weak-dynamic coloring of G, we recolor vertices v_{2} and v_{4} and find an appropriate color for v_{3}.

Let c_{1} and c_{2} be two different colors on $N_{H}\left(v_{5}\right)-\left\{v_{2}\right\}$, let c_{3} and c_{4} be two different colors on $N_{H}\left(v_{6}\right)-$ $\left\{v_{4}\right\}$, and let c_{5} be a color on $N_{H}\left(v_{1}\right)-\left\{v_{2}, v_{4}\right\}$.

We first recolor v_{2} to be a color in $\{1, \ldots, 6\}-\left\{c\left(v_{1}\right), c_{1}, c_{2}, c_{5}\right\}$. Now choose $c\left(v_{3}\right)$ to be a color in $\{1, \ldots, 6\}-\left\{c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{5}\right), c\left(v_{6}\right), c_{5}\right\}$. Note that the vertex v_{1} becomes satisfied at this stage. Finally recolor v_{4} to be a color in $\{1, \ldots, 6\}-\left\{c\left(v_{1}\right), c\left(v_{2}\right), c_{3}, c_{4}\right\}$. Since each of the vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$, and v_{6} become satisfied with these assignments of colors and since c satisfies all other vertices of H, we obtain a 3 -weak-dynamic coloring of G.

Lemma 7. The edge-minimal graph G does not contain a triangle with vertices v_{1}, v_{2}, v_{3}, where $d\left(v_{1}\right)=$ $d\left(v_{2}\right)=3$ and $d\left(v_{3}\right)=4$ such that each of v_{1} and v_{2} has only one 4^{+}-neighbor.

Figure 6: A triangle with a vertex of degree 4.

Proof. On the contrary suppose, G contains this configuration. Let $N_{G}\left(v_{1}\right)-\left\{v_{2}, v_{3}\right\}=\left\{v_{4}\right\}, N_{G}\left(v_{2}\right)-$ $\left\{v_{1}, v_{3}\right\}=\left\{v_{5}\right\}$, and $N_{G}\left(v_{3}\right)-\left\{v_{1}, v_{2}\right\}=\left\{v_{6}, v_{7}\right\}$. Since each of v_{1} and v_{2} has only one 4^{+}-neighbor, Lemma

1 implies that $d_{G}\left(v_{4}\right)=d_{G}\left(v_{5}\right)=3$. Moreover Lemma 2 implies that $d_{G}\left(v_{6}\right) \leq 3$ and $d_{G}\left(v_{7}\right) \leq 3$. We may suppose that $d_{G}\left(v_{6}\right)=d_{G}\left(v_{7}\right)=3$, because degree 3 vertices provide more restrictions on the coloring.

Contract the edge $v_{1} v_{2}$ to a single vertex $v_{1,2}$ and let H be the resulting graph. Since H has fewer edges than G, we have $w d_{3}(H) \leq 6$. Therefore there is $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3 -weak-dynamic coloring of H. We aim to reach a contradiction by using c to extend the coloring of H to G. Let c_{1} and c_{2} be two distinct colors in $c\left(N_{H}\left(v_{4}\right)-\left\{v_{1,2}\right\}\right)$, and let c_{3} and c_{4} be two distinct colors in $c\left(N_{H}\left(v_{5}\right)-\left\{v_{1,2}\right\}\right)$. Note that $c\left(v_{6}\right) \neq c\left(v_{7}\right)$, because v_{3} has degree 3 in H.

We consider three cases.
Case 1: $\left|\left\{c_{1}, c_{2}, c\left(v_{6}\right), c\left(v_{7}\right), c\left(v_{3}\right), c\left(v_{5}\right)\right\}\right|<6$.
In this case, we keep the coloring of c over all vertices of $V(H)-\left\{v_{1,2}\right\}$. Choose $c\left(v_{1}\right)$ to be a color in $\{1, \ldots, 6\}-\left\{c_{1}, c_{2}, c\left(v_{6}\right), c\left(v_{7}\right), c\left(v_{3}\right), c\left(v_{5}\right)\right\}$ that satisfies v_{2}, v_{3}, and v_{4}. Then assign v_{2} a color in $\{1, \ldots, 6\}-\left\{c_{3}, c_{4}, c\left(v_{3}\right), c\left(v_{4}\right)\right\}$ that satisfy v_{1} and v_{5}. Therefore we obtain a 3 -weak-dynamic coloring of G with at most six colors.

Case 2: $\left|\left\{c_{3}, c_{4}, c\left(v_{6}\right), c\left(v_{7}\right), c\left(v_{3}\right), c\left(v_{4}\right)\right\}\right|<6$.
In this case, we keep the coloring of c over all vertices of $V(H)-\left\{v_{1,2}\right\}$. Choose $c\left(v_{2}\right)$ to be a color in $\{1, \ldots, 6\}-\left\{c_{3}, c_{4}, c\left(v_{6}\right), c\left(v_{7}\right), c\left(v_{3}\right), c\left(v_{4}\right)\right\}$, satisfying v_{1}, v_{3}, and v_{5}. Then assign v_{1} a color in $\{1, \ldots, 6\}-\left\{c_{1}, c_{2}, c\left(v_{3}\right), c\left(v_{5}\right)\right\}$ to satisfy v_{2} and v_{4}. Therefore we obtain a 3 -weak-dynamic coloring of G with at most six colors.
Case 3: $\left\{c_{1}, c_{2}, c\left(v_{6}\right), c\left(v_{7}\right), c\left(v_{3}\right), c\left(v_{5}\right)\right\}=\left\{c_{3}, c_{4}, c\left(v_{6}\right), c\left(v_{7}\right), c\left(v_{3}\right), c\left(v_{4}\right)\right\}=\{1, \ldots, 6\}$.
Therefore we have $\left\{c_{1}, c_{2}, c\left(v_{5}\right)\right\}=\left\{c_{3}, c_{4}, c\left(v_{4}\right)\right\}$. Since v_{4} and v_{5} have a common 3-neighbor in H, we have $c\left(v_{4}\right) \neq c\left(v_{5}\right)$. Hence we may suppose that $c\left(v_{4}\right)=c_{1}, c\left(v_{5}\right)=c_{3}$, and $c_{2}=c_{4}$. As a result, we may suppose that $c_{1}=c\left(v_{4}\right)=1, c_{2}=c_{4}=2, c_{3}=c\left(v_{5}\right)=3, c\left(v_{3}\right)=4, c\left(v_{6}\right)=5$, and $c\left(v_{7}\right)=6$.
Let $N_{G}\left(v_{4}\right)=\left\{v_{8}, v_{9}\right\}$ and let $N_{G}\left(v_{5}\right)=\left\{v_{10}, v_{11}\right\}$. Let c_{7} and c_{8} be two distinct colors on the neighborhood of v_{8}, and let c_{9} and c_{10} be two distinct colors on the neighborhood of v_{9}. Now recolor v_{4} to be a color in $\{1, \ldots, 6\}$ different from its current color (color 1) and different from $\left\{c_{7}, c_{8}, c_{9}, c_{10}\right\}$. If the new color of v_{4} is not 4 , then choose $c\left(v_{2}\right)$ to be equal to 1 to satisfy v_{1}, v_{3}, v_{5}. Then assign v_{1} a color in $\{1, \ldots, 6\}-\{1,2,3,4\}$ to satisfy v_{2} and v_{4}. Therefore we obtain a 3 -weak-dynamic coloring of G with at most six colors.
Hence we may suppose we have recolored v_{4} and the new color is 4, i.e. $c\left(v_{4}\right)=4$. By a similar argument as above, we may also recolor v_{5} and we can suppose that the new color on v_{5} is 4 too. Now recolor v_{3} to be a color different from 4, different from two distinct colors in $c\left(N_{G}\left(v_{6}\right)-\left\{v_{3}\right\}\right)$, and different from two distinct colors in $c\left(N_{G}\left(v_{7}\right)-\left\{v_{3}\right\}\right)$. Now consider the new coloring on v_{3}, v_{4}, and v_{5}.
If $c\left(v_{3}\right) \neq 3$, then let $c\left(v_{1}\right)=3$ and choose $c\left(v_{2}\right)$ to be a color in $\{1,5,6\}-\left\{c\left(v_{3}\right)\right\}$. If $c\left(v_{3}\right)=3$, then let $c\left(v_{1}\right)=5$ and $c\left(v_{2}\right)=1$. In the both cases, c provides a 3 -weak-dynamic coloring of G, which is a contradiction.

Lemma 8. The edge minimal graph G does not contain a triangle with vertices v_{1}, v_{2}, v_{3}, such that $d\left(v_{1}\right)=$ $d\left(v_{2}\right)=3, d\left(v_{3}\right) \geq 5$, and each of v_{1} and v_{2} has only one 4^{+}-neighbor.

Proof. On the contrary suppose G contains this configuration. Let $H=G-\left\{v_{1}, v_{2}\right\}$. Since H has fewer edges than G, we have $w d_{3}(H) \leq 6$. Therefore there exists $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3 -weak-dynamic coloring of H. Let $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $N_{G}\left(v_{2}\right)=\left\{v_{1}, v_{3}, v_{5}\right\}$. Since $d_{G}\left(v_{4}\right) \leq 3$ and $d_{G}\left(v_{5}\right) \leq 3$, Lemma 1 implies that $d\left(v_{4}\right)=d\left(v_{5}\right)=3$. Fix the coloring c over the vertices $V(G)-\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$. We recolor v_{4} and v_{5} and then find appropriate colors for v_{1} and v_{2} to obtain a 3 -weak-dynamic coloring of G.

Figure 7: A triangle with a vertex of degree at least 5.

Note that v_{3} was satisfied by the coloring of H since $d_{H}\left(v_{3}\right) \geq 3$. Therefore, when we color v_{1} and v_{2}, the neighbors of v_{3} do not create any dependencies for them.

We begin by recoloring v_{4} and v_{5}. We have $d\left(v_{4}\right)=d\left(v_{5}\right)=3$ and therefore, by the coloring of H, we know that v_{4} must avoid two colors from the neighborhood of each vertex in $N\left(v_{4}\right)-\left\{v_{1}\right\}$. Additionally v_{4} must avoid $c\left(v_{3}\right)$. Therefore we have only five dependencies on v_{4} and we are able to choose an appropriate color for v_{4} in $\{1, \ldots, 6\}$. Similarly we have that v_{5} must avoid at most five colors. Therefore we can recolor v_{5} as well.

Now choose $c\left(v_{1}\right)$ to be a color in $\{1, \ldots, 6\}$, different from $c\left(v_{3}\right)$ and $c\left(v_{5}\right)$, and also different from the colors of the two vertices in $N_{G}\left(v_{4}\right)-\left\{v_{1}\right\}$. Finally choose $c\left(v_{2}\right)$ to be a color in $\{1, \ldots, 6\}$, different from $c\left(v_{3}\right)$ and $c\left(v_{4}\right)$, and also different from the colors of the two vertices in $N_{G}\left(v_{5}\right)-\left\{v_{2}\right\}$. This new coloring is a 3 -weak-dynamic coloring of G, a contradiction.

Lemma 9. The edge-minimal graph G with $w d_{3}(G)>6$ contains no cycle C with vertices v_{1}, \ldots, v_{k} such that $d\left(v_{1}\right)=\ldots=d\left(v_{k}\right)=3$, and

1. when k is odd, a vertex in $\left\{v_{1}, \ldots, v_{k}\right\}$ has no 4^{+}-neighbor, and
2. when k is even, a vertex in $\left\{v_{1}, v_{3}, \ldots, v_{k-1}\right\}$ and a vertex in $\left\{v_{2}, v_{4}, \ldots, v_{k}\right\}$ both have no 4^{+}-neighbor.

Proof. On the contrary, suppose G contains such a configuration C. We may choose C to be the shortest such configuration. Hence C has no chord. For each i, let v_{i}^{\prime} be the neighbor of v_{i} outside C. Note $v_{1}^{\prime}, \ldots, v_{k}^{\prime}$ are not necessarily distinct vertices, but they are distinct from v_{1}, \ldots, v_{k} because C has no chord. Let $H=G-\left\{v_{1}, \ldots, v_{k}\right\}$. Since H has fewer edges than G, we have $w d_{3}(H) \leq 6$. Thus there exists $c: V(H) \rightarrow\{1, \ldots, 6\}$ that is a 3 -weak-dynamic coloring of H. To obtain a contradiction, we use c to find a 3 -weak-dynamic coloring of G.

By Lemma 1 all the vertices $v_{1}^{\prime}, \ldots, v_{k}^{\prime}$ have degree at least 3 in G. By the structure of C, not all vertices in $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$ have degree at least 4. Hence we may suppose that when k is odd, $d\left(v_{1}^{\prime}\right)=3$, and when k is even, $d\left(v_{1}^{\prime}\right)=d\left(v_{2}^{\prime}\right)=3$. The proof of the remaining cases is very similar.

Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$. We aim to extend the coloring c to a 3 -weak-dynamic coloring of G by choosing appropriate colors for the vertices in S. Now we study the restrictions we must consider for the coloring on S to make sure that a 3 -weak-dynamic coloring of G is obtained. Let $i \in\{1, \ldots, k\}$. If v_{i}^{\prime} appears only once in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then we choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$ as well as at most two distinct colors in $N_{H}\left(v_{i}^{\prime}\right)$.

If v_{i}^{\prime} appears twice in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then in G the vertex v_{i}^{\prime} is adjacent to two vertices of C. As a result we choose the color of v_{i} to be different from a color in $N_{H}\left(v_{i}^{\prime}\right)$ and different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$, and different from the color of an additional vertex in C (the vertex v_{j} such that $\left.v_{i}^{\prime}=v_{j}^{\prime}\right)$.

For any vertex x that appears at least three times in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, choose S_{x} to consist of three indices j_{1}, j_{2}, j_{3} such that $x=v_{j_{1}}^{\prime}=v_{j_{2}}^{\prime}=v_{j_{3}}^{\prime}$. Then if we choose the colors of the vertices $v_{j_{1}}, v_{j_{2}}, v_{j_{3}}$
to be different, the vertex x becomes satisfied in G. Therefore if v_{i}^{\prime} appears three or more times in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then we choose the color of v_{i} to be different from $c\left(v_{i+1}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$ and moreover if $i \in S_{v_{i}^{\prime}}$ choose $c\left(v_{i}\right)$ to be also different from the color of two other vertices in C (the two vertices other than v_{i} whose indices belong to $S_{v_{i}^{\prime}}$). Note that by the way we aim to choose colors for the vertices v_{1}, \ldots, v_{k}, if this extension exists, all the vertices $v_{1}, \ldots, v_{k}, v_{1}^{\prime}, \ldots, v_{k}^{\prime}$ become satisfied.

Now we form a graph D that represents the dependencies among the vertices of S. The graph D has vertex set S, and two vertices of S are adjacent in D if we require their colors to be different. For each vertex w in S, let $R(w)$ be the set of those colors we need to avoid for $c(w)$ that come from vertices outside of S. Define $L(w)=\{1, \ldots, 6\}-R(w)$. By the above argument each vertex of S has at most six restrictions, hence $|L(w)|$ is at least the degree of w in D for all $w \in S$. It is enough to show that D is L-choosable, because then the coloring of vertices of D can be used on the corresponding vertices in G to extend c to a 3 -weak-dynamic coloring of G.

In D each vertex v_{i} is adjacent to v_{i-2}, v_{i+2}. When v_{i}^{\prime} appears more than once in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, the vertex v_{i} might have other neighbors in D as well. As a result when k is odd, D has one component which is Hamiltonian, and when k is even, D has at most two components.

By Lemma 5, we have $k \neq 3$. When $k=4$ each of the vertices v_{1}, \ldots, v_{4} has at most five restrictions, which makes their lists larger than their degrees. By Corollary $1, D$ is L-choosable in this case. Hence suppose $k \geq 5$.

First suppose that D is 2-connected. If D is not a complete graph, an odd cycle, if D has a vertex u with $|L(u)|>d_{D}(u)$, or if not all vertices of D have the same lists, then by Theorem 4 , Corollary 1, Proposition 1, and Proposition 2 the graph D is L-choosable, as desired. Hence suppose D is an odd cycle or a complete graph, all its lists are the same, and have size equal to the degrees of the vertices in D. Recall that vertex v_{1}^{\prime} has degree 3 in G. Thus the degree of v_{1}^{\prime} in H is at most 2 . Therefore we can recolor v_{1}^{\prime} in H by another color in such a way that the coloring on H stays 3 -weak-dynamic. Let c^{*} be the new 3 -weak-dynamic coloring of H. Now repeat the above argument over the coloring c^{*} of H.

Since $\left|L\left(v_{i}\right)\right|=d_{D}\left(v_{i}\right)$ for all i, we have $v_{i+1}^{\prime} \neq v_{i+1}^{\prime}$ (otherwise v_{i} has at most five restrictions). Moreover the choice of C and Lemma 5 imply that v_{1}^{\prime} appears at most once in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$. Hence by moving from the coloring c to the coloring c^{*}, the lists of the vertices v_{2} and v_{k} change to another list, while the lists on other vertices stay as before. Therefore not all the lists are the same now. As a result, by Corollary 1 and Propositions 1 and 2, the graph D is L-choosable, as desired.

Recall that when k is odd, D is Hamiltonian. Hence for the case that k is odd, or k is even but D is 2 -connected, the above argument shows that D is L-choosable. Now suppose that k is even and D is not 2 -connected. The graph D contains at most two components.

If D has exactly two components C_{1} and C_{2}, then vertices v_{1} and v_{2} belong to different components of D, because we know that $v_{1} v_{3} \ldots v_{k-1} v_{1}$ and $v_{2} v_{4} \ldots v_{k} v_{2}$ are cycles in D. Moreover each of the components is 2 -connected, because they are Himiltonian. Since v_{1}^{\prime} and v_{2}^{\prime} have degree at most 2 in H, a similar argument as the one we applied above can be applied here independently for C_{1} and C_{2} to extend the coloring c (and change it if necessary) to a 3 -weak-dynamic coloring of G.

Hence suppose D is connected, but is not 2-connected. Therefore D has two blocks, one with vertices of odd indices, say B_{1}, and one with vertices of even indices, say B_{2}. Therefore D has a cut-vertex v. We may suppose that v belongs to B_{1}.

Now choose colors for vertices of B_{2} from their lists in such a way that a proper coloring for B_{2} is obtained. This is possible because all vertices of B_{2} have lists of size at least their degrees and at least one vertex of B_{2} (the neighbor(s) of v in B_{2}) has a list of size one more than its degree in B_{2}. Note that v is the only vertex of B_{1} that has a neighbor in B_{2}, since otherwise v cannot be a cut-vertex of D. Now redefine $L(v)$ by removing from it the colors that are already picked for the neighbor (s) of v in B_{2}. Now consider the new list assignment L over the vertices of B_{1}. Each vertex has a list of size at least its degree in B_{1}, and B_{1} is 2 -connected. If B_{1} is not a complete graph or odd cycle (Theorem 4), if B_{1} is a complete graph or odd cycle but the lists on its vertices are not identical (Corollary 1), or if B_{1} is a complete graph or odd cycle but it has a vertex u with $|L(u)|>d_{B_{1}}(u)$ (Propositions 1 and 2), then B_{1} is L-choosable, as desired.

Hence suppose B_{1} is a complete graph or odd cycle, and the lists on the vertices of B_{1} are identical and
have size equal to the degrees of vertices in B_{1}. Recall that we supposed $d_{G}\left(v_{2}^{\prime}\right)=3$. Hence in H the vertex v_{2}^{\prime} has degree at most 2 . Therefore we can recolor this vertex using a color in $\{1, \ldots, 6\}$ by a different color in such a way that the new coloring c^{*} is still a 3 -weak-dynamic coloring of H. Now repeat the same process as above on defining a list L^{\prime} on the vertices of D, but using coloring c^{*} in place of color c.

The vertex v_{2}^{\prime} appears only once in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, because if $v_{2}^{\prime}=v_{4}^{\prime}$ or $v_{2}^{\prime}=v_{k}^{\prime}$, then the vertex v_{3} or the vertex v_{k-1} have lists of size larger than their degrees in D, which is not accepted. If $v_{2}^{\prime}=v_{j}^{\prime}$ for some $j \notin\{4, k-1\}$, then a configuration smaller than C exists in G, which is also not accepted by the choice of C.

Note that the only difference between colorings c and c^{*} is on the color of vertex v_{2}^{\prime}. By the argument in the above paragraph, only the list of vertices v_{1} and v_{3} are affected by the color of the vertex v_{2}^{\prime}. Hence the only difference between L and L^{\prime} is on the lists of vertices v_{1} and v_{3}. Therefore the vertices of B_{2} get the same colors as before, because for these vertices L and L^{\prime} are the same. Now redefine $L^{\prime}(v)$ by removing from it the color of neighbors of v in B_{2}. Now we try to color the vertices of B_{1} using the list assignment L^{\prime}. But exactly two vertices of B_{1} (the vertices v_{1} and v_{3}) have different lists than before. Moreover $k \geq 5$ implies that B_{1} has at least three vertices. Therefore not all lists on the vertices of B_{1} are now the same. Hence by Corollary 1, Proposition 1, and Proposition 2, B_{1} is L^{\prime}-choosable, as desired.

Lemma 10. The edge-minimal graph G with $w d_{3}(G)>6$ contains no cycle C with vertices v_{1}, \ldots, v_{k} such that $d\left(v_{1}\right)=\ldots=d\left(v_{k}\right)=3$.

Proof. On the contrary suppose G contains such a configuration C. We may choose C to be the shortest cycle in G that forms this configuration. Therefore C has no chord. For each i, let v_{i}^{\prime} be the neighbor of v_{i} outside C. Hence, while $v_{1}^{\prime}, \ldots v_{k}^{\prime}$ are not necessarily distinct vertices, by the choice of C they are distinct from v_{1}, \ldots, v_{k}. By Lemmas 5,8 , and 9 , we have $v_{i}^{\prime} \neq v_{i+1}^{\prime}$ for all i. By Lemma $3, d\left(v_{i}^{\prime}\right) \geq 4$ and $d\left(v_{i+1}^{\prime}\right) \geq 4$ do not simultaneously happen for all i. Therefore by Lemma $9, k$ is even. Moreover by Lemma 9 , all vertices in $\left\{v_{1}^{\prime}, v_{3}^{\prime}, \ldots, v_{k-1}^{\prime}\right\}$ or all vertices in $\left\{v_{2}^{\prime}, v_{4}^{\prime}, \ldots, v_{k}^{\prime}\right\}$ have degree at least 4 in G. By symmetry, suppose all vertices in $\left\{v_{1}^{\prime}, v_{3}^{\prime}, \ldots, v_{k-1}^{\prime}\right\}$ have degree at least 4 in G. As a result by Lemmas 1 and 3 , all vertices in $\left\{v_{2}^{\prime}, v_{4}^{\prime}, \ldots, v_{k}^{\prime}\right\}$ have degree 3 in G.

Let $H=G-\left\{v_{1}, \ldots, v_{k}\right\}$. Let H^{\prime} be the graph obtained from H by identifying vertices v_{1}^{\prime} and v_{3}^{\prime} in H into a single vertex $v_{1,3}^{\prime}$. Note that H^{\prime} is still planar and has fewer edges than G. Therefore we have $w d_{3}\left(H^{\prime}\right) \leq 6$. Thus there exists $c: V\left(H^{\prime}\right) \rightarrow\{1, \ldots, 6\}$ that is a 3 -weak-dynamic coloring of H. Now give each vertex v in H the color its corresponding vertex in H^{\prime} has. Also give vertices v_{1}^{\prime} and v_{3}^{\prime} in H the color of the vertex $v_{1,3}^{\prime}$ in H^{\prime}. In the current coloring of H all the vertices of H are satisfied (with respect to 3 -weak-dynamic coloring property) except for possibly vertices v_{1}^{\prime} and v_{3}^{\prime}.

If v_{1}^{\prime} sees only one color on its neighborhood in H, then choose a neighbor x of v_{1}^{\prime} (which we know has degree at most 3 by Lemma 1). We can recolor x by a different color in $\{1, \ldots, 6\}$ in such a way that its neighbors in $N_{H}(x)-\left\{v_{1}^{\prime}, v_{3}^{\prime}\right\}$ stay satisfied. Similarly, we can recolor a neighbor of v_{3}^{\prime} in H, when v_{3}^{\prime} sees only one color on its neighborhood in H. Let c^{*} be the resulting coloring on H. We extend c^{*} to a 3 -weak-dynamic coloring of G by finding appropriate colors for v_{1}, \ldots, v_{k}. We will call the set of vertices that we want to color S. Thus, $S=\left\{v_{1}, \ldots, v_{k}\right\}$. Now we study the restrictions we must consider for the coloring on S to make sure that a 3 -weak-dynamic coloring of G is obtained.

For each odd i with $i \notin\{1,3\}$, if v_{i}^{\prime} appears only once in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then v_{i}^{\prime} is already satisfied in H. Therefore it is enough to choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right)$, and $c\left(v_{i-1}^{\prime}\right)$. For such an i, if v_{i}^{\prime} appears twice in $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then we choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right)$, $c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$, and different form two colors in $N_{H}\left(v_{i}^{\prime}\right)$.

For any vertex x that appears at least three times in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, choose S_{x} to be a set containing three indices j_{1}, j_{2}, j_{3} such that $x=v_{j_{1}}^{\prime}=v_{j_{2}}^{\prime}=v_{j_{3}}^{\prime}$. Thus if we choose the colors of the vertices $v_{j_{1}}, v_{j_{2}}, v_{j_{3}}$ to be different, the vertex x becomes satisfied in G. Therefore, for the case that i is odd and $i \notin\{1,3\}$, if v_{i}^{\prime} appears three or more times in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then we choose the color of v_{i} to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right)$, and $c\left(v_{i-1}^{\prime}\right)$. If moreover $i \in S_{v_{i}^{\prime}}$, then choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right)$, and $c\left(v_{i-1}^{\prime}\right)$ and different from the color of two other vertices in C (the two vertices other than v_{i} whose indices belong to $\left.S_{v_{i}^{\prime}}\right)$.

Now suppose $i \in\{1,3\}$. Note that the vertices v_{1}^{\prime} and v_{3}^{\prime} might not be satisfied in H. If v_{i}^{\prime} appears only once in $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$, and also different from two colors in $N_{H}\left(v_{i}^{\prime}\right)$. If v_{i}^{\prime} appears twice in $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then we choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$, and different form two colors in $N_{H}\left(v_{i}^{\prime}\right)$. And if v_{i}^{\prime} appears three or more times in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then we choose the color of v_{i} to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right)$, $c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$ and when $i \in S_{v_{i}^{\prime}}$ choose $c\left(v_{i}\right)$ to be also different from the color of two other vertices in C (the two vertices other than v_{i} whose indices belong to $S_{v_{i}^{\prime}}$).

For each even i, the vertex v_{i}^{\prime} appears at most twice in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, since otherwise a configuration smaller than C exists in G. In fact when $k \neq 4$, the vertex v_{i}^{\prime} appears at most once in the multiset $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, by the same reason. If v_{i}^{\prime} appears only once in $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, then choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right), c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$, and also different from two colors in $N_{H}\left(v_{i}^{\prime}\right)$. If v_{i}^{\prime} appears twice in $\left\{v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$, i.e. if $k=4$ and $v_{2}^{\prime}=v_{4}^{\prime}$, then we choose $c\left(v_{i}\right)$ to be different from $c\left(v_{i+2}\right), c\left(v_{i-2}\right)$, $c\left(v_{i+1}^{\prime}\right), c\left(v_{i-1}^{\prime}\right)$, and different from the color of the vertex in $N_{H}\left(v_{i}^{\prime}\right)$.

Now we form a graph D that represents the dependencies among the vertices of S. The graph D has vertex set S and two vertices of S are adjacent in D if we require their colors to be different. For each vertex w in S, let $R(w)$ be the set of those colors we need to avoid for $c(w)$ that come from vertices outside S. Define $L(w)=\{1, \ldots, 6\}-R(w)$. By the above argument, each vertex of S has a total of at most six restrictions. Moreover vertices of indices in $\{5,7, \ldots, k-1\}$ have four restrictions. Since $c^{*}\left(v_{1}^{\prime}\right)=c^{*}\left(v_{3}^{\prime}\right)$, the vertex v_{2} has at most five restrictions, and finally when $k=4$, all the vertices of S have at most five restrictions, because v_{i+2} and v_{i-2} are the same vertices in this case.

Hence $|L(w)|$ is at least the degree of w in D for all $w \in S$, and $|L(w)|$ has size more than the degree of w in D when $w \in\left\{v_{2}, v_{5}, v_{7}, \ldots, v_{k-1}\right\}$. Therefore it is enough to show that D is L-choosable, because in this case the proper coloring we obtain for D would be an extension of c^{*} to a 3 -weak-dynamic coloring of G.

Recall that k is even. If $k=4$, then since the lists on all vertices have size larger than their degrees in D the graph D is L-choosable by Corollary 1. Thus suppose $k \geq 6$. Since k is even and $k \geq 6$, the graph D contains at most two components and for the case that it contains exactly two components, the vertices v_{5} and v_{2} belong to different components of D. Therefore all components of D have vertices with lists larger than their degrees in D, which implies that D is L-choosable by Corollary 1.

4 Proof of Theorem 1

Proof. Let G be an edge-minimal planar graph with $w d_{3}(G)>6$. By Lemma 2, the 4^{+}-vertices of G form an independent set in G. Let A_{4} be the set of vertices of degree at least 4 in G. Let A_{3}^{*} be the set of vertices v of degree 3 in G having neighbors u_{1}, u_{2}, u_{3} that satisfy the following properties:

- $d\left(u_{1}\right)=d\left(u_{2}\right)=3 ;$
- each of u_{1} and u_{2} has two 4^{+}-neighbors;
- all neighbors of u_{3} have degree 3 .

For each vertex w of G, choose $N^{*}(w)$ to be $\min \{\mathrm{d}(\mathrm{w}), 3\}$ vertices on $N(w)$ in such a way that $\left|N(w) \cap A_{3}^{*}\right|$ is as small as possible. In case we have several options to choose $N^{*}(w)$ under this condition, we choose a set whose induced subgraph in G has the maximum number of edges.

Let G^{\prime} be an auxiliary graph of G having the same vertex set as G. For each vertex v in G, make the vertices in $N^{*}(v)$ pairwise adjacent in G^{\prime}. Note that by the structure of G^{\prime}, any proper coloring of G^{\prime} corresponds to a 3-weak-dynamic coloring of G. Thus it is enough to prove that $\chi\left(G^{\prime}\right) \leq 6$.

Successively remove vertices v in $V(G)-\left(A_{4} \cup A_{3}^{*}\right)$ from G and instead make all vertices in $N_{G}(v) \cap\left(A_{4} \cup A_{3}^{*}\right)$ pairwise adjacent. Let H be the resulting graph. Each of these operations preserves planarity, because it corresponds to adding cords to two or three faces of a planar graph and then removing a vertex. Also note
that none of the edges added via this type of operation intersect, because their corresponding cords in G are non-intersecting. Therefore H is planar.

If u and v are 4^{+}-vertices in G having a common neighbor w, then by the structure of A_{3}^{*} and by Lemma 2 we have $w \in V(G)-\left(A_{3}^{*} \cup A_{4}\right)$. Similarly, if $u \in A_{4}$ and $v \in A_{3}^{*}$ have a common neighbor w in G, then $w \in V(G)-\left(A_{3}^{*} \cup A_{4}\right)$. Hence H contains all the edges of G^{\prime} having at least one endpoint in A_{4}.

Since H is planar, by the Four Color Theorem there exists a proper coloring $c: V(H) \rightarrow\{1,2,3,4\}$. For any vertex $v \in A_{4}$, define $c^{*}(v)=c(v)$. Since $G^{\prime}\left[A_{4}\right] \subseteq H$, the coloring c^{*} is a proper coloring of $G^{\prime}\left[A_{4}\right]$. To finish the proof we aim to extend c^{*} to a proper coloring of G^{\prime} using colors in $\{1, \ldots, 6\}$.

For each v in $V\left(G^{\prime}\right)$, let $N_{4}(v)=N_{G^{\prime}}(v) \cap A_{4}$. For each vertex v in $V\left(G^{\prime}\right)-A_{4}$, we define $L(v)=$ $\{1, \ldots, 6\}-c^{*}\left(N_{4}(v)\right)$. Note that all vertices in $V\left(G^{\prime}\right)-A_{4}$ have degree at most 3 in G, and that by the choice of N^{*}, each 3-vertex of G has degree at most 6 in G^{\prime}. We already have a proper coloring of $G^{\prime}\left[A_{4}\right]$ using four colors $\{1,2,3,4\}$. We aim to extend this coloring to a proper coloring of G^{\prime}. Hence let $G^{\prime \prime}=G^{\prime}-A_{4}$. Note that if $G^{\prime \prime}$ is L-choosable, then we obtain an extention of the proper coloring of $G^{\prime}\left[A_{4}\right]$ to a proper coloring of G^{\prime} using colors $\{1, \ldots, 6\}$. Therefore for the remaining of the proof our aim is to prove that $G^{\prime \prime}$ is L-choosable.

Since $d_{G^{\prime}}(v) \leq 6$ for each vertex v in $V\left(G^{\prime}\right)-A_{4}$, we have $|L(v)| \geq d_{G^{\prime \prime}}(v)$. If any component of $G^{\prime \prime}$ has a vertex whose list size is greater than its degree, or if it has a block that is not a clique or odd cycle, then by Theorem 4 and Corollary $1 G^{\prime \prime}$ is L-choosable, as desired. Therefore let C^{*} be a component of $G^{\prime \prime}$ whose vertices have list size equal to their degrees in $G^{\prime \prime}$ and whose blocks are complete graphs or odd cycles.

If $d_{G^{\prime}}(v) \leq 5$, then $|L(v)|>d_{G^{\prime \prime}}(v)$. Hence C^{*} does not contain such a vertex v. This simple observation implies that:

- C^{*} contains no vertex u whose degree is 2 in G;
- C^{*} contains no vertex u such that u has a 2-neighbor in G;
- C^{*} contains no vertex u that is inside a 4-cycle in G;
- C^{*} does not contain a vertex u such that u is a 3 -vertex of G, it has a 4^{+}-neighbor u^{\prime} in G, and $u \notin N^{*}\left(u^{\prime}\right)$.

Also note that

- C^{*} contains no vertex u of A_{3}^{*},
because otherwise using the fact that c is a proper coloring of H using only 4 colors, we know that the four vertices in $N_{G^{\prime}}(u) \cap A_{4}$ have at most three distinct colors under c. As a result, $|L(v)| \geq 3$ while $d_{G^{\prime \prime}}(v) \leq 2$.

Let B be a pendant block of C^{*}. By the choice of C^{*} the block B is a complete graph or an odd cycle. Note that since each vertex of A_{4} has a color in $\{1,2,3,4\}$, each vertex of $G^{\prime \prime}$ gets a list of size at least 2. Therefore no vertex in B has degree 1. Hence B contains at least three vertices.

We consider three cases.
Case 1: B is an odd cycle.
Let the cycle B be $u_{1}, u_{2}, \ldots, u_{r}$. Therefore for each pair of vertices u_{i} and u_{i+1}, there exists a vertex v_{i} in G such that u_{i} and u_{i+1} are neighbors of v_{i} in G. Therefore $u_{1} v_{1}, v_{1} u_{2}, u_{2} v_{2}, v_{2} v_{3}, \ldots, u_{r} v_{r}, v_{r} u_{1}$ are all edges in G.
Let $r \geq 5$. For each i, if v_{i} has degree at least 4 in G, then by the construction of G^{\prime} and since all neighbors of 4^{+}-vertices in G are 3^{-}-vertices, u_{i} would be inside a triangle in B. Hence all vertices v_{1}, \ldots, v_{r} have degree 3 in G. If $r \geq 4$ and $v_{i}=v_{i+1}$ for some i, then $N^{*}\left(v_{i}\right)=\left\{u_{i}, u_{i+1}, u_{i+2}\right\}$. As a result, the vertex u_{i} has neighbors $u_{i-1}, u_{i+1}, u_{i+2}$ in B. This is a contradiction since B is a cycle. Otherwise, recall that u_{1}, \ldots, u_{r} are distinct vertices. Note that $u_{1} v_{1} u_{2} v_{2} \ldots u_{r} v_{r} u_{1}$ is a closed walk in G. Since u_{i} s are distinct and since $v_{i} \neq v_{i+1}$ for all i, no edge is repeated immediately in the closed walk.

As a result of Proposition 3, there exists a cycle in G containing a subset of $\left\{u_{1}, \ldots, u_{r}\right\} \cup\left\{v_{1}, \ldots, v_{r}\right\}$. Hence we find a cycle C in G all whose vertices have degree 3. This is a contradiction with Lemma 10 .
Now suppose $r=3$. If v_{1}, v_{2}, and v_{3} are distinct vertices, then similar to the above argument we obtain a contradiction by finding a cycle in G all whose vertices have degree 3 . Hence suppose $v_{1}=v_{2}$. Therefore v_{1} is adjacent to u_{1}, u_{2}, and u_{3} in G. Recall that B is a pendant block of C^{*}. Therefore at least two vertices of B have degree 2 in C^{*}. As a result, at least two vertices in $\left\{u_{1}, u_{2}, u_{3}\right\}$ have four 4^{+}-vertices on their second neighborhood. In fact, those two vertices belong to A_{3}^{*}, because each of them has a neighbor $\left(v_{1}\right)$ all of whose neighbors are 3^{-}neighbors and has two other neighbors whose neighbors are 4^{+}-vertices. This is a contradiction because as we argued above C^{*} contains no vertex of A_{3}^{*}.

Case 2: At least one vertex in $V(B)$ is part of a 3-cycle in G.
Let $w v_{1} v_{2}$ be a triangle in G such that $\left\{w, v_{1}, v_{2}\right\} \cap V(B) \neq \emptyset$. By Lemma 5 , we may suppose that $d_{G}(w) \geq 4$ and $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=3$. Recall that vertices of B are 3 -vertices in G. Hence either v_{1} and v_{2} both belong to $V(B)$ or only one of them belongs to $V(B)$. Let $N_{G}\left(v_{1}\right)-\left\{w, v_{2}\right\}=\left\{v_{1}^{\prime}\right\}$ and $N_{G}\left(v_{2}\right)-\left\{w, v_{1}\right\}=\left\{v_{2}^{\prime}\right\}$. We consider two subcases.
Subcase 1. $v_{1} \in V(B)$ and $v_{2} \in V(B)$. By Lemmas 7 and 8 we may suppose that $d_{G}\left(v_{2}^{\prime}\right) \geq 4$. By the construction of $G^{\prime \prime}$, there exists a neighbor v_{3} of w such that $N^{*}(w)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Lemmas 4 and 6 imply that $v_{1}^{\prime}, v_{2}^{\prime}$, and v_{3} are distinct vertices.
Since $d_{G}\left(v_{2}^{\prime}\right) \geq 4$ by the construction of G^{\prime}, the vertex v_{2}^{\prime} has two neighbors v_{4} and v_{5} in G such that $N^{*}\left(v_{2}^{\prime}\right)=\left\{v_{2}, v_{4}, v_{5}\right\}$. Note that since G has no 4 -cycle containing a vertex in C^{*}, the vertices v_{4} and v_{5} are distinct from v_{1} and v_{3}.
The vertex v_{2} is adjacent to v_{4} and v_{5} in C^{*}. If v_{2} is not a cut-vertex of B or if v_{4} and v_{5} belong to B, then B contains at least 5 vertices $\left(\left\{v_{1}, \ldots, v_{5}\right\}\right)$. Hence B cannot be a cycle, because v_{2} is adjacent to $v_{1}, v_{3}, v_{4}, v_{5}$ in B. Therefore B is a complete graph. Hence vertices v_{4} and v_{5} must be adjacent to v_{1} in B. Equivalently, v_{4} and v_{5} must have common neighbors with v_{1} in G. If $v_{4} w \in E(G)$ or $v_{5} w \in E(G)$, then v_{2} belongs to a 4 -cycle in G, which is not accepted. Hence we must have $v_{4} v_{1}^{\prime} \in E(G)$ and $v_{5} v_{1}^{\prime} \in E(G)$. This is a contradiction, because $v_{2}^{\prime} v_{4} v_{1}^{\prime} v_{5} v_{2}^{\prime}$ forms a 4 -cycle in G.
Hence v_{2} must be a cut-vertex in C^{*}. If v_{4} is a vertex of B, knowing that v_{4} is not a cut-vertex of B, then we conclude that v_{5} belongs to B. But we argued above that the case $v_{4} \in V(B)$ and $v_{5} \in V(B)$ cannot happen. Hence none of the vertices v_{4} and v_{5} belongs to B.
We use a similar argument as above to show that $d_{G}\left(v_{1}^{\prime}\right)=3$. If $d_{G}\left(v_{1}^{\prime}\right) \geq 4$, then let $N^{*}\left(v_{1}^{\prime}\right)=$ $\left\{v_{1}, v_{6}, v_{7}\right\}$. Since v_{1} is not a cut-vertex of C^{*}, the vertices v_{6} and v_{7} belong to B. Hence B contains at least five vertices $\left(\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}\right\}\right)$. Hence B cannot be a cycle, because v_{1} is adjacent to $v_{2}, v_{3}, v_{6}, v_{7}$ in B. Therefore B is a complete graph. Hence vertices v_{6} and v_{7} must be adjacent to v_{2} in B. Equivalently, v_{6} and v_{7} must have common neighbors with v_{2} in G. If $v_{6} w \in E(G)$ or $v_{7} w \in E(G)$, then v_{1} belongs to a 4-cycle in G, which is not accepted. Hence we must have $v_{6} v_{2}^{\prime} \in E(G)$ and $v_{7} v_{2}^{\prime} \in E(G)$. This is a contradiction, because $v_{1}^{\prime} v_{6} v_{2}^{\prime} v_{7} v_{1}^{\prime}$ forms a 4 -cycle in G. Hence we have $d_{G}\left(v_{1}^{\prime}\right) \leq 3$, and so by Lemma 1 , we have $d_{G}\left(v_{1}^{\prime}\right)=3$.
Since C^{*} has no vertex in A_{3}^{*}, the vertex v_{1}^{\prime} does not have two 4^{+}-neighbors in G, otherwise $v_{1} \in A_{3}^{*}$. Hence v_{1}^{\prime} must have at least one other 3-neighbor v_{6} beside v_{1}. The vertex v_{6} is adjacent to v_{1} in B, and as a result it must also be adjacent to v_{2} in B. Therefore v_{6} must have a common neighbor with v_{2} in G that belongs to $N^{*}\left(v_{2}\right)$. That common neighbor is not w, because otherwise we find a 4-cycle containing v_{1} in G. Hence v_{6} must belong to $N^{*}\left(v_{2}^{\prime}\right)$. In other words $v_{6}=v_{4}$ or $v_{6}=v_{5}$. But this is a contradiction, because v_{6} is a vertex of B while v_{4} and v_{5} are not vertices of B.
Subcase 2. $v_{1} \in V(B)$ but $v_{2} \notin V(B)$. By the construction of G^{\prime}, there exist neighbors v_{3} and v_{4} of w such that $N^{*}(w)=\left\{v_{1}, v_{3}, v_{4}\right\}$. If $v_{3} v_{4} \in E(G)$, then we can repeat Subcase 1 for the triangle $w v_{3} v_{4}$. Hence suppose $v_{3} v_{4} \notin E(G)$. Therefore by the choice of $N^{*}(w)$, we have $v_{2} \in A_{3}^{*}, v_{3} \notin A_{3}^{*}$, and
$v_{4} \notin A_{3}^{*}$, since otherwise $\left\{v_{1}, v_{2}, v_{3}\right\}$ or $\left\{v_{1}, v_{2}, v_{4}\right\}$ would give us a better option for $N^{*}(w)$, according to the choice of $N^{*}(w)$.
Since $v_{2} \in A_{3}^{*}$, the vertex v_{2}^{\prime} has degree 3 in G and has two 4^{+}-neighbors in G. By the same reason $d_{G}\left(v_{1}^{\prime}\right) \geq 4$. Let $N^{*}\left(v_{1}^{\prime}\right)=\left\{v_{1}, v_{5}, v_{6}\right\}$. Note that we know $v_{1} \in N^{*}\left(v_{1}^{\prime}\right)$, since otherwise the vertex v_{1} has a list of size larger than its degree in $G^{\prime \prime}$. We have $\left\{v_{5}, v_{6}\right\} \cap\left\{v_{2}, v_{3}, v_{4}\right\}=\emptyset$, since otherwise G contains a 4 -cycle containing v_{1}, which is not accepted. Therefore according to the adjacencies we have determined so far in G, the vertex v_{1} has neighbors $\left\{v_{2}^{\prime}, v_{3}, \ldots, v_{6}\right\}$ in C^{*}. Therefore $d_{C^{*}}\left(v_{1}\right)=5$.
Let v_{7} and v_{8} be the 4^{+}-neighbors of v_{2}^{\prime}. Since vertex v_{2}^{\prime} has two 4^{+}-neighbors and since v_{2}^{\prime} belongs to C^{*} (because it is adjacent to v_{1} in C^{*}), we must have $v_{2}^{\prime} \in N^{*}\left(v_{7}\right)$ and $v_{2}^{\prime} \in N^{*}\left(v_{8}\right)$, since otherwise the list of v_{2}^{\prime} in $G^{\prime \prime}$ has size larger than its degree in $G^{\prime \prime}$, which is not accepted. Therefore $d_{C^{*}}\left(v_{2}^{\prime}\right)=5$.

Let $N_{G}\left(v_{3}\right)=\left\{w, v_{3}^{\prime}, v_{3}^{\prime \prime}\right\}$ and $N_{G}\left(v_{4}\right)=\left\{w, v_{4}^{\prime}, v_{4}^{\prime \prime}\right\}$. If the neighbors of v_{3} in C^{*} are only v_{1} and v_{4}, then v_{3} has to be a vertex in A_{3}^{*}, which is not accepted. If v_{3} has at most one more neighbor besides v_{1} and v_{4} in C^{*}, then we must have $d_{G}\left(v_{3}^{\prime}\right)=d_{G}\left(v_{3}^{\prime \prime}\right)=3$, one vertex in $\left\{v_{3}^{\prime}, v_{3}^{\prime \prime}\right\}$ has exactly one 3 -neighbor x, and one vertex in $\left\{v_{3}^{\prime}, v_{3}^{\prime \prime}\right\}$ has two 4^{+}-neighbors. When $x \neq w$ we get a contradiction with Lemma 2 and when $x=w$ we get a contradiction with Lemmas 7 and 8 . Therefore $d_{C^{*}}\left(v_{3}\right) \geq 4$. By a similar argument, we have $d_{C^{*}}\left(v_{4}\right) \geq 4, d_{C^{*}}\left(v_{5}\right) \geq 4$, and $d_{C^{*}}\left(v_{6}\right) \geq 4$.
By the above arguments, the vertices $v_{1}, v_{2}^{\prime}, v_{3}, v_{4}, v_{5}, v_{5}$ belong to C^{*} and all of them have degree at least 4 in C^{*}. We know moreover that $N_{C^{*}}\left(v_{1}\right)=\left\{v_{2}^{\prime}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and the vertex v_{1} is a vertex of the block B. Hence B has 5 or 6 vertices. Since v_{1}, v_{3}, v_{4} and v_{1}, v_{5}, v_{6} form triangles in C^{*}, we conclude that either $V(B)=\left\{v_{1}, v_{2}^{\prime}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ or $V(B)=\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. In the both cases B cannot be an odd cycle, so it is a complete graph.

Hence v_{3} and v_{5} have a common neighbor z in G. Also v_{3} and v_{6} have a common neighbor z^{\prime} in G. We have $z \neq z^{\prime}$ and $\left\{z, z^{\prime}\right\} \cap\left\{w, v_{1}, \ldots, v_{6}, v_{1}^{\prime}, v_{2}^{\prime}\right\}$, since otherwise a 4 -cycle containing a vertex of B exists in G or Subcase 1 can be applied. Similarly there are disjoint vertices y and y^{\prime} in G such that y is a common neighbor of v_{4} and v_{5} in G, y^{\prime} is a common neighbor of v_{4} and v_{6} in G, and $\left\{y, y^{\prime}\right\} \cap\left\{w, v_{1}, \ldots, v_{6}, v_{1}^{\prime}, v_{2}^{\prime}\right\}$. We also have $\left\{z, z^{\prime}\right\} \cap\left\{y, y^{\prime}\right\}=\emptyset$, since otherwise v_{3} or v_{5} is inside a 4-cycle in G.
Now the vertices w, v_{5}, v_{6} and v_{1}, v_{3}, v_{4} are the branch vertices of a $K_{3,3}$-minor in G, which implies G is not planar, a contradiction.

Case 3: B is a complete graph.
By Case 1 we may suppose B is a complete graph with four, five, six, or seven vertices, as each vertex in $G^{\prime \prime}$ has degree at most 6 . Since B is a pendant block, in $G^{\prime \prime}$ all but at most one vertex of B has all its neighbors in $V(B)$. Let v be one of the vertices of B all whose neighbors in $G^{\prime \prime}$ are in $V(B)$, i.e. v is not a cut-vertex of C^{*}. Let u_{1}, u_{2}, u_{3} be the neighbors of v in G. By Case $2,\left\{u_{1}, u_{2}, u_{3}\right\}$ forms an independent set in G.
We consider three subcases.
Subcase 1. Two of the neighbors of v in B, say w_{1} and w_{2}, are neighbors of u_{1} in G, and two of the neighbors of v in B, say w_{3} and w_{4}, are neighbors of u_{2} in G.
By Case 2, we may suppose that $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\} \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\emptyset$. Since G is planar, we may suppose that the vertices w_{1}, \ldots, w_{4} appear in the counterclockwise direction in the drawing of G. Note that w_{1}, \ldots, w_{4} have degree 3 in G. Since B is a complete graph, the four vertices w_{1}, \ldots, w_{4} are pairwise adjacent in B, and hence each pair of them must have a common neighbor in G.
Let y_{1} be the common neighbor of w_{1} and w_{3} in G. We have $y_{1} \neq w_{4}$, since otherwise $w_{3} w_{4} \in$ $E(G)$ and Case 2 can be applied on the triangle $u_{2} w_{3} w_{4}$. Similarly $y_{1} \neq w_{2}$. Hence all the vertices $v, u_{1}, u_{2}, w_{1}, w_{2}, w_{3}, w_{4}, y_{1}$ are distinct. Now consider the cycle $C^{\prime}: v u_{1} w_{1} y_{1} w_{3} u_{2} v$. Since the vertices w_{1}, \ldots, w_{4} are in counterclockwise direction, the cycle C^{\prime} separates the vertex w_{2} from the vertex w_{4} in G. In order to have a common neighbor for w_{2} and w_{4} in G, both of w_{2} and w_{4} have to be adjacent
to a vertex x in the cycle C^{\prime}. We have $x \neq v$, because the only neighbors of v in G are u_{1}, u_{2}, u_{3}. We have $x \neq u_{1}, x \neq u_{2}$, and $x \neq y_{1}$, since otherwise G contains a 4-cycle containing w_{2} or w_{4}, which is not accepted. We have $x \neq w_{1}$ and $x \neq w_{3}$, because otherwise Case 2 can be applied. Therefore this subcase does not happen.

Subcase 2. Two of the neighbors of v in B, say w_{1} and w_{2}, are neighbors of u_{1} in G, and one of the neighbors of v in B, say w_{3}, is a neighbor of u_{2} in G.
Since G is planar, we may suppose that the vertices w_{1}, w_{2}, w_{3} appear in the counterclockwise direction in G. Note that when $d_{B}(v)=6$ or $d_{B}(v)=5$, Subcase 1 can be applied to get a contradiction. Hence we may suppose that $d_{B}(v) \leq 4$. By Subcase 1, we may also suppose that u_{2} has a neighbor of degree at least 4. As a result, $d_{G}\left(u_{2}\right)=3$. By a similar argument we have $d_{G}\left(u_{3}\right)=3$. Let z be the 4^{+}-neighbor of u_{2}.

If $d_{G}\left(u_{1}\right) \geq 4$, then $u_{1}, v, u_{2}, z, u_{3}, w_{3}$ form a configuration as of Lemma 3, which is a contradiction. Therefore we have $d_{G}\left(u_{1}\right)=3$. The vertices w_{1} and w_{3} must have a common neighbor y_{1} in G. By Case 2 , the vertex y_{1} is different from vertices w_{2} and z. Therefore the vertices $v, u_{1}, u_{2}, w_{1}, w_{2}, w_{3}, z, y_{1}$ are all distinct vertices in G. If $d_{G}\left(y_{1}\right) \leq 3$, then $y_{1} w_{1} u_{1} v u_{2} w_{3} y_{1}$ forms a cycle of all 3^{-}-vertices, which contradicts Lemma 10 . Hence $d_{G}\left(y_{1}\right) \geq 4$.
By the construction of $G^{\prime \prime}$, the vertex y_{1} has a neighbor w_{4} in G such that w_{4} is adjacent to w_{1} and w_{3} in B, i.e. $N^{*}\left(y_{1}\right)=\left\{w_{1}, w_{3}, w_{4}\right\}$. Note that $w_{4} \neq w_{2}$, since otherwise a 4 -cycle containing w_{2} exists in G. On the other hand since B is a complete graph, w_{4} must be in the second neighborhood of v. Therefore w_{4} must be adjacent to u_{3}.
If w_{3} has only one 4^{+}-neighbor in G (the vertex y_{1}), then y_{1}, w_{3}, u_{2}, z form a configuration as the one in Lemma 2, which is a contradiction. Similarly, if w_{4} has only one 4^{+}-neighbor in G (the vertex y_{1}), then the vertices y_{1}, u_{4}, u_{3}, and the 4^{+}-neighbor of u_{3} form a configuration as the one in Lemma 2 , which is a not accepted. Therefore both of w_{3} and w_{4} have two 4^{+}-neighbors in G. As a result, each of them has degree 5 in C^{*}. We can repeat Subcase 1 for a vertex in $\left\{w_{3}, w_{4}\right\}$ that is not a cut-vertex of C^{*}.
Subcase 3. Exactly one neighbor of v in B, say w_{1} is a neighbor of u_{1} in G, exactly one neighbor of v in B, say w_{2} is a neighbor of u_{2} in G, and exactly one neighbor of v in B, say w_{3} is a neighbor of u_{3} in G.

Therefore, by Subcases 1 and 2, we may suppose that each of u_{1}, u_{2}, and u_{3} has a 4^{+}-neighbor in G. Suppose z_{1} is the 4^{+}-neighbor of u_{1} in G, z_{2} is the 4^{+}-neighbor of u_{2} in G, and z_{3} is the 4^{+}-neighbor of u_{3} in G. Hence $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=d_{G}\left(u_{3}\right)=3$. Note that in this case B is a complete graph with vertices w_{1}, w_{2}, w_{3}, and v. Hence w_{1} and w_{2} must have a common neighbor, say y_{1}, in G.
If $d_{G}\left(y_{1}\right)=3$, then $v u_{1} w_{1} y_{1} w_{2} u_{2} v$ is a cycle in G all whose vertices have degree 3 , a contradiction with Lemma 10. Hence we must have $d_{G}\left(y_{1}\right) \geq 4$. Since $\left|N^{*}\left(y_{1}\right)\right|=3$, all vertices in $N^{*}\left(y_{1}\right)$ have degree at most 3 , and since B has only four vertices, the vertex y_{1} must be adjacent to w_{3} in G. Recall that at most one vertex in $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a cut-vertex of C^{*}. With no loss of generality suppose w_{1} is not a cut-vertex of C^{*}. Now subcase 2 can be applied on w_{1} to get a contradiction.

5 Future Work

At the moment, we know of no planar graph with 3 -weak-dynamic number 6 . However, there are planar graphs with 3-weak-dynamic number 5, as we can see in Figure 8. Therefore the best general upper bound for 3 -weak-dynamic number of planar graphs is either 5 or 6 .

Question 1. Are there planar graphs that have 3-weak-dynamic number 6?

(a) $w d_{3}(G)=5$

(b) $w d_{3}(G)=5$

Figure 8: Graphs with 3-weak-dynamic number 5.

References

[1] S. Akbari, M. Ghanbari, and S. Jahanbekam, On the Dynamic Chromatic number of Graphs, Combinatorics and graphs, 11-18, Contemp. Math., Amer. Math. Soc., Providence, RI, 2010.
[2] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Applied Math. 160 (2012), 2098-2103.
[3] M. Alishahi. On the dynamic coloring of graphs, Discrete Applied Math., 159(2):152-156, 2011.
[4] K. Appel and W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J. Math. 21 (1977), 429-490.
[5] O. Borodin. Criterion of chromaticity of a degree prescription, In Abstracts of IV All-Union Conf. on Th. Cybernetics, 127-128, 1977.
[6] N. Bowler, J. Erde, F. Lehner, M. Merker, M. Pitz, K. Stavropoulos, A counterexample to Montgomery's conjecture on dynamic colourings of regular graphs, Discrete Applied Math. 229 (2017), 151-153.
[7] A. Dehghan and A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, Discrete Applied Mathematics, 160(15):2142-2146, 2012.
[8] P. Erdős, A. Rubin, and H. Taylor, Choosability in graphs, In Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, volume 26, 125-157, 1979.
[9] S. Jahanbekam, J. Kim, S. O, and D. B. West, On r-dynamic Coloring of Graphs, Discrete Applied Math. 206 (2016), 65-72.
[10] S.-J. kim, S.-J. Lee, W.-J. Park, Dynamic coloring and list dynamic coloring of planar graphs, Discrete Applied Math. 161 (2013), 2207-2212.
[11] B. Montgomery, Dynamic coloring of graphs, Ph.D Dissertation, Morgantown, West Virginia, 2001.
[12] A. Taherkhani, On r-dynamic chromatic number of graphs, Discrete Applied Mathematics, 201:222-227, 2016.
[13] K. Wagner. Über eine Erweiterung des Satzes von Kuratowski. Deutsche Math. 2:280-285, 1937.
[14] D. B. West, Introduction to Graph Theory, Second edition, Published by Prentice Hall 1996, 2001. ISBN 0-13-014400-2.

[^0]: ${ }^{1}$ Department of Mathematics, DeSales University, Center Valley, PA ; ca3070@desales.edu.
 ${ }^{2}$ School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY; vac4329@mail.rit.edu, sxjsma@rit.edu, pswsma@rit.edu.
 ${ }^{3}$ Department of Mathematics, Boise State University, Boise ID; leahahand@u.boisestate.edu.
 ${ }^{4}$ Research supported in part by NSF grant CMMI-1727743.
 ${ }^{5}$ Research supported in part by NSF grant REU-1659075.

